Cellulose Hollow Annular Nanoparticles Prepared from High-Intensity Ultrasonic Treatment
Cellulose nanomaterials, such as cellulose nanocrystals (CNCs), have received enormous attention in various material research fields due to their unique properties and green/sustainable nature, among other qualities. Herein, we report hollow-type annular cellulose nanocrystals (HTA-CNCs), which are...
Gespeichert in:
Veröffentlicht in: | ACS nano 2022-06, Vol.16 (6), p.8928-8938 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cellulose nanomaterials, such as cellulose nanocrystals (CNCs), have received enormous attention in various material research fields due to their unique properties and green/sustainable nature, among other qualities. Herein, we report hollow-type annular cellulose nanocrystals (HTA-CNCs), which are generated by following a high-intensity ultrasonic treatment. The advanced aberration-corrected transmission electron microscopy results reveal that HTA-CNCs exhibit ring structures with a typical diameter of 10.0–30.0 nm, a width of 3.0–4.0 nm, and a thickness of 2.0–5.0 nm, similar to those of elementary crystallites. The X-ray diffraction measurements show that the as-prepared HTA-CNCs maintain the cellulose I structure. The changes in structure and hydrogen-bonding characteristics of HTA-CNCs are further determined based on the FT-IR results after deconvolution fitting, showing that three types of hydrogen bonds decrease and the content of free OH increases in HTA-CNCs compared with those in the original CNCs. Furthermore, molecular dynamics simulation is carried out to support the experimental study. The formation of HTA-CNCs might be attributed to the structural change and entropy increase. The hollow-type annular CNCs may have broad value-added applications as cellulose nanomaterials in different fields. |
---|---|
ISSN: | 1936-0851 1936-086X |
DOI: | 10.1021/acsnano.1c11167 |