Efficient removal of Cs(I) from water using a novel Prussian blue and graphene oxide modified PVDF membrane: Preparation, characterization, and mechanism

The Prussian blue (PB) blending membranes are promising candidates for the removal of trace radionuclide Cs+. Constructing a membrane with high flux and selectivity are challenging in its practical application. Here, a novel polyvinylidene fluoride (PVDF)-PB-graphene oxide (GO) modified membrane was...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2022-09, Vol.838, p.156530-156530, Article 156530
Hauptverfasser: Zhang, Yanjun, Wang, Huixian, Gao, Kexuan, Huang, Doudou, Hou, Li'’an, Yang, Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Prussian blue (PB) blending membranes are promising candidates for the removal of trace radionuclide Cs+. Constructing a membrane with high flux and selectivity are challenging in its practical application. Here, a novel polyvinylidene fluoride (PVDF)-PB-graphene oxide (GO) modified membrane was fabricated via phase inversion for trace radionuclide cesium (137Cs) removal from water. Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) were used to analyze chemical composition and morphology of the membrane, and the properties in terms of water flux and Cs+ removal were studied under different PB dosage, pH and co-existing ions conditions. It was observed that the addition of GO improved the dispersion of PB, and the PVDF-PB-GO membrane presented the highest Cs+ removal efficiency (99.6 %) and water flux (1638.2 LMH/bar) at pH = 7 with 0.1 wt% GO and 5 wt% PB. In addition, Langmuir and pseudo-second-order kinetics models fitted well for Cs+ adsorption by the PVDF-PB-GO membrane, illustrating that the Cs+ was removed via chemical adsorption dominated by Fe(CN)64− defect sites of PB and the oxygen groups of GO. Furthermore, the membrane showed a significant selectivity and reusability towards trace radioactive cesium, even in the presence of excess co-existing ions and in real water, which strongly verified that the modified membrane had application potential. [Display omitted] •PB and GO modified membrane was first fabricated for Cs+ removal.•The addition of GO improved the dispersion of PB•The membrane can remove 99.6 % Cs+ and gain high water flux (1638.2 LMH/bar).•Exhibited excellent affinity and selectivity (Kd ~ 14,000) towards Cs+.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2022.156530