A graph attention network for road marking classification from mobile LiDAR point clouds

•A graph attention network is used to classify road marking in MLS point clouds.•Graph structure and attention mechanism are helpful for road marking classification.•The sample and aggregate strategy is flexible for large-scale MLS point clouds.•The proposed model achieves state-of-art performance,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of applied earth observation and geoinformation 2022-04, Vol.108, p.102735, Article 102735
Hauptverfasser: Fang, Lina, Sun, Tongtong, Wang, Shuang, Fan, Hongchao, Li, Jonathan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 102735
container_title International journal of applied earth observation and geoinformation
container_volume 108
creator Fang, Lina
Sun, Tongtong
Wang, Shuang
Fan, Hongchao
Li, Jonathan
description •A graph attention network is used to classify road marking in MLS point clouds.•Graph structure and attention mechanism are helpful for road marking classification.•The sample and aggregate strategy is flexible for large-scale MLS point clouds.•The proposed model achieves state-of-art performance, with average F1 over 91%. The category of road marking is a crucial element in Mobile laser scanning systems’ (MLSs) applications such as intelligent traffic systems, high-definition maps, location and navigation services. Due to the complexity of road scenes, considerable and various categories, occlusion and uneven intensities in MLS point clouds, finely road marking classification is considered as the challenging work. This paper proposes a graph attention network named GAT_SCNet to simultaneously group the road markings into 11 categories from MLS point clouds. Concretely, the proposed GAT_SCNet model constructs serial computable subgraphs and fulfills a multi-head attention mechanism to encode the geometric, topological, and spatial relationships between the node and neighbors to generate the distinguishable descriptor of road marking. To assess the effectiveness and generalization of the GAT_SCNet model, we conduct extensive experiments on five test datasets of about 100 km in total captured by different MLS systems. Three accuracy evaluation metrics: average Precision, Recall, and F1 of 11 categories on the test datasets exceed 91%, respectively. Accuracy evaluations and comparative studies show that our method has achieved a new state-of-the-art work on road marking classification, especially on similar linear road markings like stop lines, zebra crossings, and dotted lines.
doi_str_mv 10.1016/j.jag.2022.102735
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2675578456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0303243422000617</els_id><sourcerecordid>2675578456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-d366502f6ac1368a242e75286728d528ed9f2b2b663ad75daa56e0252b23af923</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhQdRsFZ_gLss3UyduWkexVWpTygIotBdSPOomU4nY5Iq_ntTx7Wrc-_lnAvnK4rLuprUVU2vm0kjNxOoAPIODJOjYlRzBiUHujrOM6Gzkk8xnBZnMTZVVTNG-ahYzdEmyP4dyZRMl5zvUGfSlw9bZH1AwUuNdjJsXbdBqpUxOuuU_PXZ4Hdo59euNWjpbucvqPeuS9nm9zqeFydWttFc_Om4eLu_e108lsvnh6fFfFkqzHAqNaaUVGCpVDWmXMIUDCPAKQOusxo9s7CGNaVYaka0lISaCki-YWlngMfF1fC3D_5jb2ISOxeVaVvZGb-PAigjhPEpodlaD1YVfIzBWNEHl8t9i7oSB4qiEZmiOFAUA8WcuRkyJnf4dCaIqJzplNEuGJWE9u6f9A_BZHn0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2675578456</pqid></control><display><type>article</type><title>A graph attention network for road marking classification from mobile LiDAR point clouds</title><source>DOAJ Directory of Open Access Journals</source><source>Elsevier ScienceDirect Journals</source><creator>Fang, Lina ; Sun, Tongtong ; Wang, Shuang ; Fan, Hongchao ; Li, Jonathan</creator><creatorcontrib>Fang, Lina ; Sun, Tongtong ; Wang, Shuang ; Fan, Hongchao ; Li, Jonathan</creatorcontrib><description>•A graph attention network is used to classify road marking in MLS point clouds.•Graph structure and attention mechanism are helpful for road marking classification.•The sample and aggregate strategy is flexible for large-scale MLS point clouds.•The proposed model achieves state-of-art performance, with average F1 over 91%. The category of road marking is a crucial element in Mobile laser scanning systems’ (MLSs) applications such as intelligent traffic systems, high-definition maps, location and navigation services. Due to the complexity of road scenes, considerable and various categories, occlusion and uneven intensities in MLS point clouds, finely road marking classification is considered as the challenging work. This paper proposes a graph attention network named GAT_SCNet to simultaneously group the road markings into 11 categories from MLS point clouds. Concretely, the proposed GAT_SCNet model constructs serial computable subgraphs and fulfills a multi-head attention mechanism to encode the geometric, topological, and spatial relationships between the node and neighbors to generate the distinguishable descriptor of road marking. To assess the effectiveness and generalization of the GAT_SCNet model, we conduct extensive experiments on five test datasets of about 100 km in total captured by different MLS systems. Three accuracy evaluation metrics: average Precision, Recall, and F1 of 11 categories on the test datasets exceed 91%, respectively. Accuracy evaluations and comparative studies show that our method has achieved a new state-of-the-art work on road marking classification, especially on similar linear road markings like stop lines, zebra crossings, and dotted lines.</description><identifier>ISSN: 1569-8432</identifier><identifier>EISSN: 1872-826X</identifier><identifier>DOI: 10.1016/j.jag.2022.102735</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Attention mechanism ; data collection ; Deep learning ; Graph neural network ; lidar ; MLS points clouds ; Road marking classification ; spatial data ; topology ; traffic ; zebras</subject><ispartof>International journal of applied earth observation and geoinformation, 2022-04, Vol.108, p.102735, Article 102735</ispartof><rights>2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-d366502f6ac1368a242e75286728d528ed9f2b2b663ad75daa56e0252b23af923</citedby><cites>FETCH-LOGICAL-c373t-d366502f6ac1368a242e75286728d528ed9f2b2b663ad75daa56e0252b23af923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jag.2022.102735$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Fang, Lina</creatorcontrib><creatorcontrib>Sun, Tongtong</creatorcontrib><creatorcontrib>Wang, Shuang</creatorcontrib><creatorcontrib>Fan, Hongchao</creatorcontrib><creatorcontrib>Li, Jonathan</creatorcontrib><title>A graph attention network for road marking classification from mobile LiDAR point clouds</title><title>International journal of applied earth observation and geoinformation</title><description>•A graph attention network is used to classify road marking in MLS point clouds.•Graph structure and attention mechanism are helpful for road marking classification.•The sample and aggregate strategy is flexible for large-scale MLS point clouds.•The proposed model achieves state-of-art performance, with average F1 over 91%. The category of road marking is a crucial element in Mobile laser scanning systems’ (MLSs) applications such as intelligent traffic systems, high-definition maps, location and navigation services. Due to the complexity of road scenes, considerable and various categories, occlusion and uneven intensities in MLS point clouds, finely road marking classification is considered as the challenging work. This paper proposes a graph attention network named GAT_SCNet to simultaneously group the road markings into 11 categories from MLS point clouds. Concretely, the proposed GAT_SCNet model constructs serial computable subgraphs and fulfills a multi-head attention mechanism to encode the geometric, topological, and spatial relationships between the node and neighbors to generate the distinguishable descriptor of road marking. To assess the effectiveness and generalization of the GAT_SCNet model, we conduct extensive experiments on five test datasets of about 100 km in total captured by different MLS systems. Three accuracy evaluation metrics: average Precision, Recall, and F1 of 11 categories on the test datasets exceed 91%, respectively. Accuracy evaluations and comparative studies show that our method has achieved a new state-of-the-art work on road marking classification, especially on similar linear road markings like stop lines, zebra crossings, and dotted lines.</description><subject>Attention mechanism</subject><subject>data collection</subject><subject>Deep learning</subject><subject>Graph neural network</subject><subject>lidar</subject><subject>MLS points clouds</subject><subject>Road marking classification</subject><subject>spatial data</subject><subject>topology</subject><subject>traffic</subject><subject>zebras</subject><issn>1569-8432</issn><issn>1872-826X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhQdRsFZ_gLss3UyduWkexVWpTygIotBdSPOomU4nY5Iq_ntTx7Wrc-_lnAvnK4rLuprUVU2vm0kjNxOoAPIODJOjYlRzBiUHujrOM6Gzkk8xnBZnMTZVVTNG-ahYzdEmyP4dyZRMl5zvUGfSlw9bZH1AwUuNdjJsXbdBqpUxOuuU_PXZ4Hdo59euNWjpbucvqPeuS9nm9zqeFydWttFc_Om4eLu_e108lsvnh6fFfFkqzHAqNaaUVGCpVDWmXMIUDCPAKQOusxo9s7CGNaVYaka0lISaCki-YWlngMfF1fC3D_5jb2ISOxeVaVvZGb-PAigjhPEpodlaD1YVfIzBWNEHl8t9i7oSB4qiEZmiOFAUA8WcuRkyJnf4dCaIqJzplNEuGJWE9u6f9A_BZHn0</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Fang, Lina</creator><creator>Sun, Tongtong</creator><creator>Wang, Shuang</creator><creator>Fan, Hongchao</creator><creator>Li, Jonathan</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>202204</creationdate><title>A graph attention network for road marking classification from mobile LiDAR point clouds</title><author>Fang, Lina ; Sun, Tongtong ; Wang, Shuang ; Fan, Hongchao ; Li, Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-d366502f6ac1368a242e75286728d528ed9f2b2b663ad75daa56e0252b23af923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Attention mechanism</topic><topic>data collection</topic><topic>Deep learning</topic><topic>Graph neural network</topic><topic>lidar</topic><topic>MLS points clouds</topic><topic>Road marking classification</topic><topic>spatial data</topic><topic>topology</topic><topic>traffic</topic><topic>zebras</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Lina</creatorcontrib><creatorcontrib>Sun, Tongtong</creatorcontrib><creatorcontrib>Wang, Shuang</creatorcontrib><creatorcontrib>Fan, Hongchao</creatorcontrib><creatorcontrib>Li, Jonathan</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>International journal of applied earth observation and geoinformation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Lina</au><au>Sun, Tongtong</au><au>Wang, Shuang</au><au>Fan, Hongchao</au><au>Li, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A graph attention network for road marking classification from mobile LiDAR point clouds</atitle><jtitle>International journal of applied earth observation and geoinformation</jtitle><date>2022-04</date><risdate>2022</risdate><volume>108</volume><spage>102735</spage><pages>102735-</pages><artnum>102735</artnum><issn>1569-8432</issn><eissn>1872-826X</eissn><abstract>•A graph attention network is used to classify road marking in MLS point clouds.•Graph structure and attention mechanism are helpful for road marking classification.•The sample and aggregate strategy is flexible for large-scale MLS point clouds.•The proposed model achieves state-of-art performance, with average F1 over 91%. The category of road marking is a crucial element in Mobile laser scanning systems’ (MLSs) applications such as intelligent traffic systems, high-definition maps, location and navigation services. Due to the complexity of road scenes, considerable and various categories, occlusion and uneven intensities in MLS point clouds, finely road marking classification is considered as the challenging work. This paper proposes a graph attention network named GAT_SCNet to simultaneously group the road markings into 11 categories from MLS point clouds. Concretely, the proposed GAT_SCNet model constructs serial computable subgraphs and fulfills a multi-head attention mechanism to encode the geometric, topological, and spatial relationships between the node and neighbors to generate the distinguishable descriptor of road marking. To assess the effectiveness and generalization of the GAT_SCNet model, we conduct extensive experiments on five test datasets of about 100 km in total captured by different MLS systems. Three accuracy evaluation metrics: average Precision, Recall, and F1 of 11 categories on the test datasets exceed 91%, respectively. Accuracy evaluations and comparative studies show that our method has achieved a new state-of-the-art work on road marking classification, especially on similar linear road markings like stop lines, zebra crossings, and dotted lines.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jag.2022.102735</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1569-8432
ispartof International journal of applied earth observation and geoinformation, 2022-04, Vol.108, p.102735, Article 102735
issn 1569-8432
1872-826X
language eng
recordid cdi_proquest_miscellaneous_2675578456
source DOAJ Directory of Open Access Journals; Elsevier ScienceDirect Journals
subjects Attention mechanism
data collection
Deep learning
Graph neural network
lidar
MLS points clouds
Road marking classification
spatial data
topology
traffic
zebras
title A graph attention network for road marking classification from mobile LiDAR point clouds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A21%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20graph%20attention%20network%20for%20road%20marking%20classification%20from%20mobile%20LiDAR%20point%20clouds&rft.jtitle=International%20journal%20of%20applied%20earth%20observation%20and%20geoinformation&rft.au=Fang,%20Lina&rft.date=2022-04&rft.volume=108&rft.spage=102735&rft.pages=102735-&rft.artnum=102735&rft.issn=1569-8432&rft.eissn=1872-826X&rft_id=info:doi/10.1016/j.jag.2022.102735&rft_dat=%3Cproquest_cross%3E2675578456%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2675578456&rft_id=info:pmid/&rft_els_id=S0303243422000617&rfr_iscdi=true