A graph attention network for road marking classification from mobile LiDAR point clouds
•A graph attention network is used to classify road marking in MLS point clouds.•Graph structure and attention mechanism are helpful for road marking classification.•The sample and aggregate strategy is flexible for large-scale MLS point clouds.•The proposed model achieves state-of-art performance,...
Gespeichert in:
Veröffentlicht in: | International journal of applied earth observation and geoinformation 2022-04, Vol.108, p.102735, Article 102735 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •A graph attention network is used to classify road marking in MLS point clouds.•Graph structure and attention mechanism are helpful for road marking classification.•The sample and aggregate strategy is flexible for large-scale MLS point clouds.•The proposed model achieves state-of-art performance, with average F1 over 91%.
The category of road marking is a crucial element in Mobile laser scanning systems’ (MLSs) applications such as intelligent traffic systems, high-definition maps, location and navigation services. Due to the complexity of road scenes, considerable and various categories, occlusion and uneven intensities in MLS point clouds, finely road marking classification is considered as the challenging work. This paper proposes a graph attention network named GAT_SCNet to simultaneously group the road markings into 11 categories from MLS point clouds. Concretely, the proposed GAT_SCNet model constructs serial computable subgraphs and fulfills a multi-head attention mechanism to encode the geometric, topological, and spatial relationships between the node and neighbors to generate the distinguishable descriptor of road marking. To assess the effectiveness and generalization of the GAT_SCNet model, we conduct extensive experiments on five test datasets of about 100 km in total captured by different MLS systems. Three accuracy evaluation metrics: average Precision, Recall, and F1 of 11 categories on the test datasets exceed 91%, respectively. Accuracy evaluations and comparative studies show that our method has achieved a new state-of-the-art work on road marking classification, especially on similar linear road markings like stop lines, zebra crossings, and dotted lines. |
---|---|
ISSN: | 1569-8432 1872-826X |
DOI: | 10.1016/j.jag.2022.102735 |