A Galerkin boundary integral method for multiple circular elastic inclusions
The problem of an infinite, isotropic elastic plane containing an arbitrary number of circular elastic inclusions is considered. The analysis procedure is based on the use of a complex singular integral equation. The unknown tractions at each circular boundary are approximated by a truncated complex...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in engineering 2001-12, Vol.52 (10), p.1069-1106 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The problem of an infinite, isotropic elastic plane containing an arbitrary number of circular elastic inclusions is considered. The analysis procedure is based on the use of a complex singular integral equation. The unknown tractions at each circular boundary are approximated by a truncated complex Fourier series. A system of linear algebraic equations is obtained by using the classical Galerkin method and the Gauss–Seidel algorithm is used to solve the system. Several numerical examples are considered to demonstrate the effectiveness of the approach. Copyright © 2001 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0029-5981 1097-0207 |
DOI: | 10.1002/nme.243 |