Subpicosecond reverse saturable absorption in organic and organometallic solutions
Solutions of several carbocyanines, phthalocyanines and naphthalocyanines were studied by time-resolved transient spectroscopy with subpicosecond white-light continuum. The excited-state absorption cross-sections of all compounds were determined from the differential spectra obtained at short delay...
Gespeichert in:
Veröffentlicht in: | Optics communications 1998-12, Vol.158 (1), p.201-212 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Solutions of several carbocyanines, phthalocyanines and naphthalocyanines were studied by time-resolved transient spectroscopy with subpicosecond white-light continuum. The excited-state absorption cross-sections of all compounds were determined from the differential spectra obtained at short delay time after excitation, by a global spectral analysis. All these molecules exhibit an excited-state absorption cross-section higher than that of the ground state at 610 nm. This spectral property gives rise to a reverse saturable absorption (RSA) effect under high laser fluences at this wavelength. Nonlinear transmission of these molecules was measured under increasing laser fluences. A three-level molecular model was used to simulate the measured nonlinear transmission and the best fits were obtained with molecular parameters in good agreement with those deduced from the analysis of the transient spectra. The use of RSA for the energy stabilization of ultrashort laser pulses was demonstrated, and a stabilization coefficient was defined as an efficient tool for characterizing nonlinear behavior of such compounds. |
---|---|
ISSN: | 0030-4018 1873-0310 |
DOI: | 10.1016/S0030-4018(98)00563-X |