Therapeutic effect of lycopene in lipopolysaccharide nephrotoxicity through alleviation of mitochondrial dysfunction, inflammation, and oxidative stress
Background Sepsis-associated acute kidney injury (AKI) accompanies a higher mortality in intensive care patients. High-dose lipopolysaccharides (LPS) as an endotoxin is usually used to model AKI in rodents. Lycopene is a fat-soluble carotenoid with proved protective effects in different condition. R...
Gespeichert in:
Veröffentlicht in: | Molecular biology reports 2022-09, Vol.49 (9), p.8429-8438 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background
Sepsis-associated acute kidney injury (AKI) accompanies a higher mortality in intensive care patients. High-dose lipopolysaccharides (LPS) as an endotoxin is usually used to model AKI in rodents. Lycopene is a fat-soluble carotenoid with proved protective effects in different condition. Rationale and purpose of the study. This research work was designed to assess the effect of lycopene in LPS murine AKI.
Methods and results
LPS was injected (intraperitoneally) at 10 mg/kg to induce AKI and lycopene was given (orally) at 5 or 20 mg/kg. Pretreatment of LPS group with lycopene (20 mg/kg) lowered serum BUN, creatinine, and cystatin C and alleviated renal indices of oxidative stress consisting of malondialdehyde and reactive oxygen species and elevated level of catalase activity, superoxide dismutase activity, and glutathione peroxidase activity. In addition, lycopene (20 mg/kg) attenuated renal neutrophil infiltration and reduced renal inflammation, improved mitochondrial membrane potential, and increased gene expression for PGC1-α as a key regulator of mitochondrial biogenesis. In addition, lycopene appropriately reduced level and gene expression of inflammation-related transcription factors including NF-kB and TLR4 and improved level and gene expression of Nrf2 as an important transcription factor related to antioxidant system. Besides, lycopene prevented histopathological changes following LPS in periodic acid-Schiff staining.
Conclusions
Collectively, this study revealed that lycopene has favorable effects by means of amelioration of mitochondrial dysfunction, oxidative stress, and inflammation and accordingly could protect against LPS-induced AKI. |
---|---|
ISSN: | 0301-4851 1573-4978 |
DOI: | 10.1007/s11033-022-07661-1 |