Low and high storage temperature inhibited the coloration of mandarin fruit (Citrus unshiu Marc.) with different mechanism

BACKGROUND Peel color regulated by pigment metabolism is one of the most crucial indicators affecting the commodity values of citrus fruit. Storage temperature is a vital environmental factor that regulates the fruit pigmentation. RESULTS Results showed that the peel coloring process was significant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the science of food and agriculture 2022-12, Vol.102 (15), p.6930-6941
Hauptverfasser: Ge, Xiaoxiao, Cao, Tingting, Yi, Lanhua, Yao, Shixiang, Zeng, Kaifang, Deng, Lili
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:BACKGROUND Peel color regulated by pigment metabolism is one of the most crucial indicators affecting the commodity values of citrus fruit. Storage temperature is a vital environmental factor that regulates the fruit pigmentation. RESULTS Results showed that the peel coloring process was significantly inhibited when mandarin fruit were stored at 5 and 32 °C with normal coloring at 25 °C as the control. However, the inhibitive mechanisms of 5 and 32 °C storage were different. At 5 °C, higher levels of CcNYC and CcCHL2 were detected, which indicated that 5 °C induces the circulation of chlorophyll rather than inhibits chlorophyll degradation. CcPSY2, CcCHYB, and CcZEP exhibited higher expression levels in fruit stored at 5 °C, which accelerated the accumulation of carotenoids. In fruit stored at 32 °C, CcNYC, CcPAO, and CcCHL2 exhibited lower expression levels than those fruit stored at 5 °C, and the expressions of CcPSY2, CcCHYB, and CcZEP were down regulated, implying the carotenoid synthesis was suppressed. CONCLUSION Storage at 5 °C inhibited the postharvest coloring of mandarin fruit mainly by activating the cycle of chlorophyll, although it promotes the accumulation of carotenoids at the same time, but chlorophyll covers the color of carotenoids. Storage at 32 °C inhibited mandarin fruit coloring mainly by inhibiting the degradation of chlorophyll. Compared with the change of individual chlorophyll or carotenoid content, the change of the ratio of chlorophyll and carotenoid had a more important role in the coloration of mandarin fruit. This research offers valuable details for understanding the effect of temperature on the coloring process of postharvest citrus fruit. © 2022 Society of Chemical Industry.
ISSN:0022-5142
1097-0010
DOI:10.1002/jsfa.12054