Trends in Stroke Kinematics, Reynolds Number, and Swimming Mode in Shrimp-Like Organisms

Metachronal propulsion is commonly seen in organisms with the caridoid facies body plan, i.e. shrimp-like organisms, as they beat their pleopods in an adlocomotory sequence. These organisms exist across length scales ranging several orders of Reynolds number magnitude, from 10 to 104, during locomot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Integrative and comparative biology 2022-09, Vol.62 (3), p.791-804
Hauptverfasser: Ruszczyk, Melissa, Webster, Donald R, Yen, Jeannette
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Metachronal propulsion is commonly seen in organisms with the caridoid facies body plan, i.e. shrimp-like organisms, as they beat their pleopods in an adlocomotory sequence. These organisms exist across length scales ranging several orders of Reynolds number magnitude, from 10 to 104, during locomotion. Further, by altering their stroke kinematics, these organisms achieve three distinct swimming modes. To better understand the relationship between Reynolds number, stroke kinematics, and resulting swimming mode, Euphausia pacifica stroke kinematics were quantified using high-speed digital recordings and compared to the results for the larger E. superba. Euphausia pacifica consistently operate with a greater beat frequency and smaller stroke amplitude than E. superba for each swimming mode, suggesting that length scale may affect the kinematics needed to achieve similar swimming modes. To expand on this observation, these euphausiid data are used in combination with previously-published stroke kinematics from mysids and stomatopods to identify broad trends across swimming mode and length scale in metachrony. Principal component analysis (PCA) reveals trends in stroke kinematics and Reynolds number as well as the variation among taxonomic order. Overall, larger beat frequencies, stroke amplitudes, between-cycle phase lags, and Reynolds numbers are more representative of the fast forward swimming mode compared to the slower hovering mode. Additionally, each species has a unique combination of kinematics that result in metachrony, indicating that there are other factors, perhaps morphological, which affect the overall metachronal characteristics of an organism. Finally, uniform phase lag, in which the timing between power strokes of all pleopods is equal, in 5-paddle systems is achieved at different Reynolds numbers for different swimming modes, highlighting the importance of taking into consideration stroke kinematics, length scale, and the resulting swimming mode.
ISSN:1540-7063
1557-7023
1557-7023
DOI:10.1093/icb/icac067