Learning binds new inputs into functional synaptic clusters via spinogenesis

Learning induces the formation of new excitatory synapses in the form of dendritic spines, but their functional properties remain unknown. Here, using longitudinal in vivo two-photon imaging and correlated electron microscopy of dendritic spines in the motor cortex of mice during motor learning, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature neuroscience 2022-06, Vol.25 (6), p.726-737
Hauptverfasser: Hedrick, Nathan G., Lu, Zhongmin, Bushong, Eric, Singhi, Surbhi, Nguyen, Peter, Magaña, Yessenia, Jilani, Sayyed, Lim, Byung Kook, Ellisman, Mark, Komiyama, Takaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 737
container_issue 6
container_start_page 726
container_title Nature neuroscience
container_volume 25
creator Hedrick, Nathan G.
Lu, Zhongmin
Bushong, Eric
Singhi, Surbhi
Nguyen, Peter
Magaña, Yessenia
Jilani, Sayyed
Lim, Byung Kook
Ellisman, Mark
Komiyama, Takaki
description Learning induces the formation of new excitatory synapses in the form of dendritic spines, but their functional properties remain unknown. Here, using longitudinal in vivo two-photon imaging and correlated electron microscopy of dendritic spines in the motor cortex of mice during motor learning, we describe a framework for the formation, survival and resulting function of new, learning-related spines. Specifically, our data indicate that the formation of new spines during learning is guided by the potentiation of functionally clustered preexisting spines exhibiting task-related activity during earlier sessions of learning. We present evidence that this clustered potentiation induces the local outgrowth of multiple filopodia from the nearby dendrite, locally sampling the adjacent neuropil for potential axonal partners, likely via targeting preexisting presynaptic boutons. Successful connections are then selected for survival based on co-activity with nearby task-related spines, ensuring that the new spine preserves functional clustering. The resulting locally coherent activity of new spines signals the learned movement. Furthermore, we found that a majority of new spines synapse with axons previously unrepresented in these dendritic domains. Thus, learning involves the binding of new information streams into functional synaptic clusters to subserve learned behaviors. Learning induces formation of dendritic spines, but their functional properties are unknown. The authors show that new spines bind new presynaptic inputs into preexisting spine clusters, generating locally coherent inputs representing learned behaviors.
doi_str_mv 10.1038/s41593-022-01086-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2673357186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2673357186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-d528de2ac75e9fc70ccf5f7fa6e2e32714f8b4f7058554fd4dd35567b420ef513</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVJ6Sbb_oEegiGXXpzqwyPZx7IkTWChl_YstPJoUfDKjsZOyL-vt05SyCGnGZhn3mEexr4Kfim4qr9TJaBRJZey5ILXutQf2KmASpfCSH0y97wxpZagV-yM6I5zbqBuPrGVAg1VA-aUbbfocoppX-xiaqlI-FjENEwjzWXsizAlP8Y-ua6gp-SGMfrCdxONmKl4iK6gIaZ-jwkp0mf2MbiO8MtzXbM_11e_Nzfl9tfP282PbemVgbFsQdYtSucNYBO84d4HCCY4jRKVNKIK9a4KhkMNUIW2alsFoM2ukhwDCLVm35bcIff3E9JoD5E8dp1L2E9kpTZKgRG1ntGLN-hdP-X5nYUyUjWinim5UD73RBmDHXI8uPxkBbdH13ZxbWfX9p9re4w-f46edgdsX1de5M6AWgCaR2mP-f_td2L_An_BilQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2673723918</pqid></control><display><type>article</type><title>Learning binds new inputs into functional synaptic clusters via spinogenesis</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Hedrick, Nathan G. ; Lu, Zhongmin ; Bushong, Eric ; Singhi, Surbhi ; Nguyen, Peter ; Magaña, Yessenia ; Jilani, Sayyed ; Lim, Byung Kook ; Ellisman, Mark ; Komiyama, Takaki</creator><creatorcontrib>Hedrick, Nathan G. ; Lu, Zhongmin ; Bushong, Eric ; Singhi, Surbhi ; Nguyen, Peter ; Magaña, Yessenia ; Jilani, Sayyed ; Lim, Byung Kook ; Ellisman, Mark ; Komiyama, Takaki</creatorcontrib><description>Learning induces the formation of new excitatory synapses in the form of dendritic spines, but their functional properties remain unknown. Here, using longitudinal in vivo two-photon imaging and correlated electron microscopy of dendritic spines in the motor cortex of mice during motor learning, we describe a framework for the formation, survival and resulting function of new, learning-related spines. Specifically, our data indicate that the formation of new spines during learning is guided by the potentiation of functionally clustered preexisting spines exhibiting task-related activity during earlier sessions of learning. We present evidence that this clustered potentiation induces the local outgrowth of multiple filopodia from the nearby dendrite, locally sampling the adjacent neuropil for potential axonal partners, likely via targeting preexisting presynaptic boutons. Successful connections are then selected for survival based on co-activity with nearby task-related spines, ensuring that the new spine preserves functional clustering. The resulting locally coherent activity of new spines signals the learned movement. Furthermore, we found that a majority of new spines synapse with axons previously unrepresented in these dendritic domains. Thus, learning involves the binding of new information streams into functional synaptic clusters to subserve learned behaviors. Learning induces formation of dendritic spines, but their functional properties are unknown. The authors show that new spines bind new presynaptic inputs into preexisting spine clusters, generating locally coherent inputs representing learned behaviors.</description><identifier>ISSN: 1097-6256</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/s41593-022-01086-6</identifier><identifier>PMID: 35654957</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/378/1595/2618 ; 631/378/2591 ; 631/378/3920 ; Animal Genetics and Genomics ; Animals ; Axon guidance ; Axons ; Behavioral Sciences ; Biological Techniques ; Biomedical and Life Sciences ; Biomedicine ; Clustering ; Cortex (motor) ; Dendritic Spines ; Dendritic structure ; Electron microscopy ; Filopodia ; Learning ; Mice ; Microscopy ; Motor skill learning ; Neurobiology ; Neuroimaging ; Neuropil ; Neurosciences ; Potentiation ; Presynapse ; Presynaptic Terminals ; Spine ; Survival ; Synapses ; Synapses - metabolism ; Synaptogenesis</subject><ispartof>Nature neuroscience, 2022-06, Vol.25 (6), p.726-737</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2022</rights><rights>2022. The Author(s), under exclusive licence to Springer Nature America, Inc.</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-d528de2ac75e9fc70ccf5f7fa6e2e32714f8b4f7058554fd4dd35567b420ef513</citedby><cites>FETCH-LOGICAL-c375t-d528de2ac75e9fc70ccf5f7fa6e2e32714f8b4f7058554fd4dd35567b420ef513</cites><orcidid>0000-0001-9609-4600 ; 0000-0002-3766-5415 ; 0000-0001-6210-8111 ; 0000-0001-6195-2433 ; 0000-0003-3933-7033</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41593-022-01086-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41593-022-01086-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35654957$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hedrick, Nathan G.</creatorcontrib><creatorcontrib>Lu, Zhongmin</creatorcontrib><creatorcontrib>Bushong, Eric</creatorcontrib><creatorcontrib>Singhi, Surbhi</creatorcontrib><creatorcontrib>Nguyen, Peter</creatorcontrib><creatorcontrib>Magaña, Yessenia</creatorcontrib><creatorcontrib>Jilani, Sayyed</creatorcontrib><creatorcontrib>Lim, Byung Kook</creatorcontrib><creatorcontrib>Ellisman, Mark</creatorcontrib><creatorcontrib>Komiyama, Takaki</creatorcontrib><title>Learning binds new inputs into functional synaptic clusters via spinogenesis</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><addtitle>Nat Neurosci</addtitle><description>Learning induces the formation of new excitatory synapses in the form of dendritic spines, but their functional properties remain unknown. Here, using longitudinal in vivo two-photon imaging and correlated electron microscopy of dendritic spines in the motor cortex of mice during motor learning, we describe a framework for the formation, survival and resulting function of new, learning-related spines. Specifically, our data indicate that the formation of new spines during learning is guided by the potentiation of functionally clustered preexisting spines exhibiting task-related activity during earlier sessions of learning. We present evidence that this clustered potentiation induces the local outgrowth of multiple filopodia from the nearby dendrite, locally sampling the adjacent neuropil for potential axonal partners, likely via targeting preexisting presynaptic boutons. Successful connections are then selected for survival based on co-activity with nearby task-related spines, ensuring that the new spine preserves functional clustering. The resulting locally coherent activity of new spines signals the learned movement. Furthermore, we found that a majority of new spines synapse with axons previously unrepresented in these dendritic domains. Thus, learning involves the binding of new information streams into functional synaptic clusters to subserve learned behaviors. Learning induces formation of dendritic spines, but their functional properties are unknown. The authors show that new spines bind new presynaptic inputs into preexisting spine clusters, generating locally coherent inputs representing learned behaviors.</description><subject>631/378/1595/2618</subject><subject>631/378/2591</subject><subject>631/378/3920</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Axon guidance</subject><subject>Axons</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Clustering</subject><subject>Cortex (motor)</subject><subject>Dendritic Spines</subject><subject>Dendritic structure</subject><subject>Electron microscopy</subject><subject>Filopodia</subject><subject>Learning</subject><subject>Mice</subject><subject>Microscopy</subject><subject>Motor skill learning</subject><subject>Neurobiology</subject><subject>Neuroimaging</subject><subject>Neuropil</subject><subject>Neurosciences</subject><subject>Potentiation</subject><subject>Presynapse</subject><subject>Presynaptic Terminals</subject><subject>Spine</subject><subject>Survival</subject><subject>Synapses</subject><subject>Synapses - metabolism</subject><subject>Synaptogenesis</subject><issn>1097-6256</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kE1r3DAQhkVJ6Sbb_oEegiGXXpzqwyPZx7IkTWChl_YstPJoUfDKjsZOyL-vt05SyCGnGZhn3mEexr4Kfim4qr9TJaBRJZey5ILXutQf2KmASpfCSH0y97wxpZagV-yM6I5zbqBuPrGVAg1VA-aUbbfocoppX-xiaqlI-FjENEwjzWXsizAlP8Y-ua6gp-SGMfrCdxONmKl4iK6gIaZ-jwkp0mf2MbiO8MtzXbM_11e_Nzfl9tfP282PbemVgbFsQdYtSucNYBO84d4HCCY4jRKVNKIK9a4KhkMNUIW2alsFoM2ukhwDCLVm35bcIff3E9JoD5E8dp1L2E9kpTZKgRG1ntGLN-hdP-X5nYUyUjWinim5UD73RBmDHXI8uPxkBbdH13ZxbWfX9p9re4w-f46edgdsX1de5M6AWgCaR2mP-f_td2L_An_BilQ</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Hedrick, Nathan G.</creator><creator>Lu, Zhongmin</creator><creator>Bushong, Eric</creator><creator>Singhi, Surbhi</creator><creator>Nguyen, Peter</creator><creator>Magaña, Yessenia</creator><creator>Jilani, Sayyed</creator><creator>Lim, Byung Kook</creator><creator>Ellisman, Mark</creator><creator>Komiyama, Takaki</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9609-4600</orcidid><orcidid>https://orcid.org/0000-0002-3766-5415</orcidid><orcidid>https://orcid.org/0000-0001-6210-8111</orcidid><orcidid>https://orcid.org/0000-0001-6195-2433</orcidid><orcidid>https://orcid.org/0000-0003-3933-7033</orcidid></search><sort><creationdate>20220601</creationdate><title>Learning binds new inputs into functional synaptic clusters via spinogenesis</title><author>Hedrick, Nathan G. ; Lu, Zhongmin ; Bushong, Eric ; Singhi, Surbhi ; Nguyen, Peter ; Magaña, Yessenia ; Jilani, Sayyed ; Lim, Byung Kook ; Ellisman, Mark ; Komiyama, Takaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-d528de2ac75e9fc70ccf5f7fa6e2e32714f8b4f7058554fd4dd35567b420ef513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>631/378/1595/2618</topic><topic>631/378/2591</topic><topic>631/378/3920</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Axon guidance</topic><topic>Axons</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Clustering</topic><topic>Cortex (motor)</topic><topic>Dendritic Spines</topic><topic>Dendritic structure</topic><topic>Electron microscopy</topic><topic>Filopodia</topic><topic>Learning</topic><topic>Mice</topic><topic>Microscopy</topic><topic>Motor skill learning</topic><topic>Neurobiology</topic><topic>Neuroimaging</topic><topic>Neuropil</topic><topic>Neurosciences</topic><topic>Potentiation</topic><topic>Presynapse</topic><topic>Presynaptic Terminals</topic><topic>Spine</topic><topic>Survival</topic><topic>Synapses</topic><topic>Synapses - metabolism</topic><topic>Synaptogenesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hedrick, Nathan G.</creatorcontrib><creatorcontrib>Lu, Zhongmin</creatorcontrib><creatorcontrib>Bushong, Eric</creatorcontrib><creatorcontrib>Singhi, Surbhi</creatorcontrib><creatorcontrib>Nguyen, Peter</creatorcontrib><creatorcontrib>Magaña, Yessenia</creatorcontrib><creatorcontrib>Jilani, Sayyed</creatorcontrib><creatorcontrib>Lim, Byung Kook</creatorcontrib><creatorcontrib>Ellisman, Mark</creatorcontrib><creatorcontrib>Komiyama, Takaki</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hedrick, Nathan G.</au><au>Lu, Zhongmin</au><au>Bushong, Eric</au><au>Singhi, Surbhi</au><au>Nguyen, Peter</au><au>Magaña, Yessenia</au><au>Jilani, Sayyed</au><au>Lim, Byung Kook</au><au>Ellisman, Mark</au><au>Komiyama, Takaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning binds new inputs into functional synaptic clusters via spinogenesis</atitle><jtitle>Nature neuroscience</jtitle><stitle>Nat Neurosci</stitle><addtitle>Nat Neurosci</addtitle><date>2022-06-01</date><risdate>2022</risdate><volume>25</volume><issue>6</issue><spage>726</spage><epage>737</epage><pages>726-737</pages><issn>1097-6256</issn><eissn>1546-1726</eissn><abstract>Learning induces the formation of new excitatory synapses in the form of dendritic spines, but their functional properties remain unknown. Here, using longitudinal in vivo two-photon imaging and correlated electron microscopy of dendritic spines in the motor cortex of mice during motor learning, we describe a framework for the formation, survival and resulting function of new, learning-related spines. Specifically, our data indicate that the formation of new spines during learning is guided by the potentiation of functionally clustered preexisting spines exhibiting task-related activity during earlier sessions of learning. We present evidence that this clustered potentiation induces the local outgrowth of multiple filopodia from the nearby dendrite, locally sampling the adjacent neuropil for potential axonal partners, likely via targeting preexisting presynaptic boutons. Successful connections are then selected for survival based on co-activity with nearby task-related spines, ensuring that the new spine preserves functional clustering. The resulting locally coherent activity of new spines signals the learned movement. Furthermore, we found that a majority of new spines synapse with axons previously unrepresented in these dendritic domains. Thus, learning involves the binding of new information streams into functional synaptic clusters to subserve learned behaviors. Learning induces formation of dendritic spines, but their functional properties are unknown. The authors show that new spines bind new presynaptic inputs into preexisting spine clusters, generating locally coherent inputs representing learned behaviors.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>35654957</pmid><doi>10.1038/s41593-022-01086-6</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9609-4600</orcidid><orcidid>https://orcid.org/0000-0002-3766-5415</orcidid><orcidid>https://orcid.org/0000-0001-6210-8111</orcidid><orcidid>https://orcid.org/0000-0001-6195-2433</orcidid><orcidid>https://orcid.org/0000-0003-3933-7033</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1097-6256
ispartof Nature neuroscience, 2022-06, Vol.25 (6), p.726-737
issn 1097-6256
1546-1726
language eng
recordid cdi_proquest_miscellaneous_2673357186
source MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 631/378/1595/2618
631/378/2591
631/378/3920
Animal Genetics and Genomics
Animals
Axon guidance
Axons
Behavioral Sciences
Biological Techniques
Biomedical and Life Sciences
Biomedicine
Clustering
Cortex (motor)
Dendritic Spines
Dendritic structure
Electron microscopy
Filopodia
Learning
Mice
Microscopy
Motor skill learning
Neurobiology
Neuroimaging
Neuropil
Neurosciences
Potentiation
Presynapse
Presynaptic Terminals
Spine
Survival
Synapses
Synapses - metabolism
Synaptogenesis
title Learning binds new inputs into functional synaptic clusters via spinogenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T21%3A16%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20binds%20new%20inputs%20into%20functional%20synaptic%20clusters%20via%20spinogenesis&rft.jtitle=Nature%20neuroscience&rft.au=Hedrick,%20Nathan%20G.&rft.date=2022-06-01&rft.volume=25&rft.issue=6&rft.spage=726&rft.epage=737&rft.pages=726-737&rft.issn=1097-6256&rft.eissn=1546-1726&rft_id=info:doi/10.1038/s41593-022-01086-6&rft_dat=%3Cproquest_cross%3E2673357186%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2673723918&rft_id=info:pmid/35654957&rfr_iscdi=true