Learning binds new inputs into functional synaptic clusters via spinogenesis
Learning induces the formation of new excitatory synapses in the form of dendritic spines, but their functional properties remain unknown. Here, using longitudinal in vivo two-photon imaging and correlated electron microscopy of dendritic spines in the motor cortex of mice during motor learning, we...
Gespeichert in:
Veröffentlicht in: | Nature neuroscience 2022-06, Vol.25 (6), p.726-737 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 737 |
---|---|
container_issue | 6 |
container_start_page | 726 |
container_title | Nature neuroscience |
container_volume | 25 |
creator | Hedrick, Nathan G. Lu, Zhongmin Bushong, Eric Singhi, Surbhi Nguyen, Peter Magaña, Yessenia Jilani, Sayyed Lim, Byung Kook Ellisman, Mark Komiyama, Takaki |
description | Learning induces the formation of new excitatory synapses in the form of dendritic spines, but their functional properties remain unknown. Here, using longitudinal in vivo two-photon imaging and correlated electron microscopy of dendritic spines in the motor cortex of mice during motor learning, we describe a framework for the formation, survival and resulting function of new, learning-related spines. Specifically, our data indicate that the formation of new spines during learning is guided by the potentiation of functionally clustered preexisting spines exhibiting task-related activity during earlier sessions of learning. We present evidence that this clustered potentiation induces the local outgrowth of multiple filopodia from the nearby dendrite, locally sampling the adjacent neuropil for potential axonal partners, likely via targeting preexisting presynaptic boutons. Successful connections are then selected for survival based on co-activity with nearby task-related spines, ensuring that the new spine preserves functional clustering. The resulting locally coherent activity of new spines signals the learned movement. Furthermore, we found that a majority of new spines synapse with axons previously unrepresented in these dendritic domains. Thus, learning involves the binding of new information streams into functional synaptic clusters to subserve learned behaviors.
Learning induces formation of dendritic spines, but their functional properties are unknown. The authors show that new spines bind new presynaptic inputs into preexisting spine clusters, generating locally coherent inputs representing learned behaviors. |
doi_str_mv | 10.1038/s41593-022-01086-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2673357186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2673357186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-d528de2ac75e9fc70ccf5f7fa6e2e32714f8b4f7058554fd4dd35567b420ef513</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVJ6Sbb_oEegiGXXpzqwyPZx7IkTWChl_YstPJoUfDKjsZOyL-vt05SyCGnGZhn3mEexr4Kfim4qr9TJaBRJZey5ILXutQf2KmASpfCSH0y97wxpZagV-yM6I5zbqBuPrGVAg1VA-aUbbfocoppX-xiaqlI-FjENEwjzWXsizAlP8Y-ua6gp-SGMfrCdxONmKl4iK6gIaZ-jwkp0mf2MbiO8MtzXbM_11e_Nzfl9tfP282PbemVgbFsQdYtSucNYBO84d4HCCY4jRKVNKIK9a4KhkMNUIW2alsFoM2ukhwDCLVm35bcIff3E9JoD5E8dp1L2E9kpTZKgRG1ntGLN-hdP-X5nYUyUjWinim5UD73RBmDHXI8uPxkBbdH13ZxbWfX9p9re4w-f46edgdsX1de5M6AWgCaR2mP-f_td2L_An_BilQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2673723918</pqid></control><display><type>article</type><title>Learning binds new inputs into functional synaptic clusters via spinogenesis</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Hedrick, Nathan G. ; Lu, Zhongmin ; Bushong, Eric ; Singhi, Surbhi ; Nguyen, Peter ; Magaña, Yessenia ; Jilani, Sayyed ; Lim, Byung Kook ; Ellisman, Mark ; Komiyama, Takaki</creator><creatorcontrib>Hedrick, Nathan G. ; Lu, Zhongmin ; Bushong, Eric ; Singhi, Surbhi ; Nguyen, Peter ; Magaña, Yessenia ; Jilani, Sayyed ; Lim, Byung Kook ; Ellisman, Mark ; Komiyama, Takaki</creatorcontrib><description>Learning induces the formation of new excitatory synapses in the form of dendritic spines, but their functional properties remain unknown. Here, using longitudinal in vivo two-photon imaging and correlated electron microscopy of dendritic spines in the motor cortex of mice during motor learning, we describe a framework for the formation, survival and resulting function of new, learning-related spines. Specifically, our data indicate that the formation of new spines during learning is guided by the potentiation of functionally clustered preexisting spines exhibiting task-related activity during earlier sessions of learning. We present evidence that this clustered potentiation induces the local outgrowth of multiple filopodia from the nearby dendrite, locally sampling the adjacent neuropil for potential axonal partners, likely via targeting preexisting presynaptic boutons. Successful connections are then selected for survival based on co-activity with nearby task-related spines, ensuring that the new spine preserves functional clustering. The resulting locally coherent activity of new spines signals the learned movement. Furthermore, we found that a majority of new spines synapse with axons previously unrepresented in these dendritic domains. Thus, learning involves the binding of new information streams into functional synaptic clusters to subserve learned behaviors.
Learning induces formation of dendritic spines, but their functional properties are unknown. The authors show that new spines bind new presynaptic inputs into preexisting spine clusters, generating locally coherent inputs representing learned behaviors.</description><identifier>ISSN: 1097-6256</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/s41593-022-01086-6</identifier><identifier>PMID: 35654957</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/378/1595/2618 ; 631/378/2591 ; 631/378/3920 ; Animal Genetics and Genomics ; Animals ; Axon guidance ; Axons ; Behavioral Sciences ; Biological Techniques ; Biomedical and Life Sciences ; Biomedicine ; Clustering ; Cortex (motor) ; Dendritic Spines ; Dendritic structure ; Electron microscopy ; Filopodia ; Learning ; Mice ; Microscopy ; Motor skill learning ; Neurobiology ; Neuroimaging ; Neuropil ; Neurosciences ; Potentiation ; Presynapse ; Presynaptic Terminals ; Spine ; Survival ; Synapses ; Synapses - metabolism ; Synaptogenesis</subject><ispartof>Nature neuroscience, 2022-06, Vol.25 (6), p.726-737</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2022</rights><rights>2022. The Author(s), under exclusive licence to Springer Nature America, Inc.</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-d528de2ac75e9fc70ccf5f7fa6e2e32714f8b4f7058554fd4dd35567b420ef513</citedby><cites>FETCH-LOGICAL-c375t-d528de2ac75e9fc70ccf5f7fa6e2e32714f8b4f7058554fd4dd35567b420ef513</cites><orcidid>0000-0001-9609-4600 ; 0000-0002-3766-5415 ; 0000-0001-6210-8111 ; 0000-0001-6195-2433 ; 0000-0003-3933-7033</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41593-022-01086-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41593-022-01086-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35654957$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hedrick, Nathan G.</creatorcontrib><creatorcontrib>Lu, Zhongmin</creatorcontrib><creatorcontrib>Bushong, Eric</creatorcontrib><creatorcontrib>Singhi, Surbhi</creatorcontrib><creatorcontrib>Nguyen, Peter</creatorcontrib><creatorcontrib>Magaña, Yessenia</creatorcontrib><creatorcontrib>Jilani, Sayyed</creatorcontrib><creatorcontrib>Lim, Byung Kook</creatorcontrib><creatorcontrib>Ellisman, Mark</creatorcontrib><creatorcontrib>Komiyama, Takaki</creatorcontrib><title>Learning binds new inputs into functional synaptic clusters via spinogenesis</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><addtitle>Nat Neurosci</addtitle><description>Learning induces the formation of new excitatory synapses in the form of dendritic spines, but their functional properties remain unknown. Here, using longitudinal in vivo two-photon imaging and correlated electron microscopy of dendritic spines in the motor cortex of mice during motor learning, we describe a framework for the formation, survival and resulting function of new, learning-related spines. Specifically, our data indicate that the formation of new spines during learning is guided by the potentiation of functionally clustered preexisting spines exhibiting task-related activity during earlier sessions of learning. We present evidence that this clustered potentiation induces the local outgrowth of multiple filopodia from the nearby dendrite, locally sampling the adjacent neuropil for potential axonal partners, likely via targeting preexisting presynaptic boutons. Successful connections are then selected for survival based on co-activity with nearby task-related spines, ensuring that the new spine preserves functional clustering. The resulting locally coherent activity of new spines signals the learned movement. Furthermore, we found that a majority of new spines synapse with axons previously unrepresented in these dendritic domains. Thus, learning involves the binding of new information streams into functional synaptic clusters to subserve learned behaviors.
Learning induces formation of dendritic spines, but their functional properties are unknown. The authors show that new spines bind new presynaptic inputs into preexisting spine clusters, generating locally coherent inputs representing learned behaviors.</description><subject>631/378/1595/2618</subject><subject>631/378/2591</subject><subject>631/378/3920</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Axon guidance</subject><subject>Axons</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Clustering</subject><subject>Cortex (motor)</subject><subject>Dendritic Spines</subject><subject>Dendritic structure</subject><subject>Electron microscopy</subject><subject>Filopodia</subject><subject>Learning</subject><subject>Mice</subject><subject>Microscopy</subject><subject>Motor skill learning</subject><subject>Neurobiology</subject><subject>Neuroimaging</subject><subject>Neuropil</subject><subject>Neurosciences</subject><subject>Potentiation</subject><subject>Presynapse</subject><subject>Presynaptic Terminals</subject><subject>Spine</subject><subject>Survival</subject><subject>Synapses</subject><subject>Synapses - metabolism</subject><subject>Synaptogenesis</subject><issn>1097-6256</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kE1r3DAQhkVJ6Sbb_oEegiGXXpzqwyPZx7IkTWChl_YstPJoUfDKjsZOyL-vt05SyCGnGZhn3mEexr4Kfim4qr9TJaBRJZey5ILXutQf2KmASpfCSH0y97wxpZagV-yM6I5zbqBuPrGVAg1VA-aUbbfocoppX-xiaqlI-FjENEwjzWXsizAlP8Y-ua6gp-SGMfrCdxONmKl4iK6gIaZ-jwkp0mf2MbiO8MtzXbM_11e_Nzfl9tfP282PbemVgbFsQdYtSucNYBO84d4HCCY4jRKVNKIK9a4KhkMNUIW2alsFoM2ukhwDCLVm35bcIff3E9JoD5E8dp1L2E9kpTZKgRG1ntGLN-hdP-X5nYUyUjWinim5UD73RBmDHXI8uPxkBbdH13ZxbWfX9p9re4w-f46edgdsX1de5M6AWgCaR2mP-f_td2L_An_BilQ</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Hedrick, Nathan G.</creator><creator>Lu, Zhongmin</creator><creator>Bushong, Eric</creator><creator>Singhi, Surbhi</creator><creator>Nguyen, Peter</creator><creator>Magaña, Yessenia</creator><creator>Jilani, Sayyed</creator><creator>Lim, Byung Kook</creator><creator>Ellisman, Mark</creator><creator>Komiyama, Takaki</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9609-4600</orcidid><orcidid>https://orcid.org/0000-0002-3766-5415</orcidid><orcidid>https://orcid.org/0000-0001-6210-8111</orcidid><orcidid>https://orcid.org/0000-0001-6195-2433</orcidid><orcidid>https://orcid.org/0000-0003-3933-7033</orcidid></search><sort><creationdate>20220601</creationdate><title>Learning binds new inputs into functional synaptic clusters via spinogenesis</title><author>Hedrick, Nathan G. ; Lu, Zhongmin ; Bushong, Eric ; Singhi, Surbhi ; Nguyen, Peter ; Magaña, Yessenia ; Jilani, Sayyed ; Lim, Byung Kook ; Ellisman, Mark ; Komiyama, Takaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-d528de2ac75e9fc70ccf5f7fa6e2e32714f8b4f7058554fd4dd35567b420ef513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>631/378/1595/2618</topic><topic>631/378/2591</topic><topic>631/378/3920</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Axon guidance</topic><topic>Axons</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Clustering</topic><topic>Cortex (motor)</topic><topic>Dendritic Spines</topic><topic>Dendritic structure</topic><topic>Electron microscopy</topic><topic>Filopodia</topic><topic>Learning</topic><topic>Mice</topic><topic>Microscopy</topic><topic>Motor skill learning</topic><topic>Neurobiology</topic><topic>Neuroimaging</topic><topic>Neuropil</topic><topic>Neurosciences</topic><topic>Potentiation</topic><topic>Presynapse</topic><topic>Presynaptic Terminals</topic><topic>Spine</topic><topic>Survival</topic><topic>Synapses</topic><topic>Synapses - metabolism</topic><topic>Synaptogenesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hedrick, Nathan G.</creatorcontrib><creatorcontrib>Lu, Zhongmin</creatorcontrib><creatorcontrib>Bushong, Eric</creatorcontrib><creatorcontrib>Singhi, Surbhi</creatorcontrib><creatorcontrib>Nguyen, Peter</creatorcontrib><creatorcontrib>Magaña, Yessenia</creatorcontrib><creatorcontrib>Jilani, Sayyed</creatorcontrib><creatorcontrib>Lim, Byung Kook</creatorcontrib><creatorcontrib>Ellisman, Mark</creatorcontrib><creatorcontrib>Komiyama, Takaki</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hedrick, Nathan G.</au><au>Lu, Zhongmin</au><au>Bushong, Eric</au><au>Singhi, Surbhi</au><au>Nguyen, Peter</au><au>Magaña, Yessenia</au><au>Jilani, Sayyed</au><au>Lim, Byung Kook</au><au>Ellisman, Mark</au><au>Komiyama, Takaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning binds new inputs into functional synaptic clusters via spinogenesis</atitle><jtitle>Nature neuroscience</jtitle><stitle>Nat Neurosci</stitle><addtitle>Nat Neurosci</addtitle><date>2022-06-01</date><risdate>2022</risdate><volume>25</volume><issue>6</issue><spage>726</spage><epage>737</epage><pages>726-737</pages><issn>1097-6256</issn><eissn>1546-1726</eissn><abstract>Learning induces the formation of new excitatory synapses in the form of dendritic spines, but their functional properties remain unknown. Here, using longitudinal in vivo two-photon imaging and correlated electron microscopy of dendritic spines in the motor cortex of mice during motor learning, we describe a framework for the formation, survival and resulting function of new, learning-related spines. Specifically, our data indicate that the formation of new spines during learning is guided by the potentiation of functionally clustered preexisting spines exhibiting task-related activity during earlier sessions of learning. We present evidence that this clustered potentiation induces the local outgrowth of multiple filopodia from the nearby dendrite, locally sampling the adjacent neuropil for potential axonal partners, likely via targeting preexisting presynaptic boutons. Successful connections are then selected for survival based on co-activity with nearby task-related spines, ensuring that the new spine preserves functional clustering. The resulting locally coherent activity of new spines signals the learned movement. Furthermore, we found that a majority of new spines synapse with axons previously unrepresented in these dendritic domains. Thus, learning involves the binding of new information streams into functional synaptic clusters to subserve learned behaviors.
Learning induces formation of dendritic spines, but their functional properties are unknown. The authors show that new spines bind new presynaptic inputs into preexisting spine clusters, generating locally coherent inputs representing learned behaviors.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>35654957</pmid><doi>10.1038/s41593-022-01086-6</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9609-4600</orcidid><orcidid>https://orcid.org/0000-0002-3766-5415</orcidid><orcidid>https://orcid.org/0000-0001-6210-8111</orcidid><orcidid>https://orcid.org/0000-0001-6195-2433</orcidid><orcidid>https://orcid.org/0000-0003-3933-7033</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-6256 |
ispartof | Nature neuroscience, 2022-06, Vol.25 (6), p.726-737 |
issn | 1097-6256 1546-1726 |
language | eng |
recordid | cdi_proquest_miscellaneous_2673357186 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 631/378/1595/2618 631/378/2591 631/378/3920 Animal Genetics and Genomics Animals Axon guidance Axons Behavioral Sciences Biological Techniques Biomedical and Life Sciences Biomedicine Clustering Cortex (motor) Dendritic Spines Dendritic structure Electron microscopy Filopodia Learning Mice Microscopy Motor skill learning Neurobiology Neuroimaging Neuropil Neurosciences Potentiation Presynapse Presynaptic Terminals Spine Survival Synapses Synapses - metabolism Synaptogenesis |
title | Learning binds new inputs into functional synaptic clusters via spinogenesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T21%3A16%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20binds%20new%20inputs%20into%20functional%20synaptic%20clusters%20via%20spinogenesis&rft.jtitle=Nature%20neuroscience&rft.au=Hedrick,%20Nathan%20G.&rft.date=2022-06-01&rft.volume=25&rft.issue=6&rft.spage=726&rft.epage=737&rft.pages=726-737&rft.issn=1097-6256&rft.eissn=1546-1726&rft_id=info:doi/10.1038/s41593-022-01086-6&rft_dat=%3Cproquest_cross%3E2673357186%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2673723918&rft_id=info:pmid/35654957&rfr_iscdi=true |