Learning binds new inputs into functional synaptic clusters via spinogenesis

Learning induces the formation of new excitatory synapses in the form of dendritic spines, but their functional properties remain unknown. Here, using longitudinal in vivo two-photon imaging and correlated electron microscopy of dendritic spines in the motor cortex of mice during motor learning, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature neuroscience 2022-06, Vol.25 (6), p.726-737
Hauptverfasser: Hedrick, Nathan G., Lu, Zhongmin, Bushong, Eric, Singhi, Surbhi, Nguyen, Peter, Magaña, Yessenia, Jilani, Sayyed, Lim, Byung Kook, Ellisman, Mark, Komiyama, Takaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Learning induces the formation of new excitatory synapses in the form of dendritic spines, but their functional properties remain unknown. Here, using longitudinal in vivo two-photon imaging and correlated electron microscopy of dendritic spines in the motor cortex of mice during motor learning, we describe a framework for the formation, survival and resulting function of new, learning-related spines. Specifically, our data indicate that the formation of new spines during learning is guided by the potentiation of functionally clustered preexisting spines exhibiting task-related activity during earlier sessions of learning. We present evidence that this clustered potentiation induces the local outgrowth of multiple filopodia from the nearby dendrite, locally sampling the adjacent neuropil for potential axonal partners, likely via targeting preexisting presynaptic boutons. Successful connections are then selected for survival based on co-activity with nearby task-related spines, ensuring that the new spine preserves functional clustering. The resulting locally coherent activity of new spines signals the learned movement. Furthermore, we found that a majority of new spines synapse with axons previously unrepresented in these dendritic domains. Thus, learning involves the binding of new information streams into functional synaptic clusters to subserve learned behaviors. Learning induces formation of dendritic spines, but their functional properties are unknown. The authors show that new spines bind new presynaptic inputs into preexisting spine clusters, generating locally coherent inputs representing learned behaviors.
ISSN:1097-6256
1546-1726
DOI:10.1038/s41593-022-01086-6