Physisorption of Affinity Ligands Facilitates Extracellular Vesicle Detection with Low Non-Specific Binding to Plasmonic Gold Substrates

Plasmonic biosensors are increasingly being used for the analysis of extracellular vesicles (EVs) originating from disease areas. However, the high non-specific binding of EVs to a gold-sensing surface has been a critical problem and hindered the true translational potential. Here, we report that di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2022-06, Vol.14 (23), p.26548-26556
Hauptverfasser: Kim, Kihyeun, Son, Taehwang, Hong, Jae-Sang, Kwak, Tae Joon, Jeong, Mi Ho, Weissleder, Ralph, Im, Hyungsoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Plasmonic biosensors are increasingly being used for the analysis of extracellular vesicles (EVs) originating from disease areas. However, the high non-specific binding of EVs to a gold-sensing surface has been a critical problem and hindered the true translational potential. Here, we report that direct antibody immobilization on the plasmonic gold surface via physisorption shows excellent capture of cancer-derived EVs with ultralow non-specific binding even at very high concentrations. Contrary to commonly used methods that involve thiol-based linker attachment and an EDC/sulfo-NHS reaction, we show a higher specific capture rate and >50-fold lower non-specific on citrate-capped plain and nanopatterned gold surfaces. The method provides a simple, fast, and reproducible means to functionalize plasmonic gold surfaces with antibodies for robust EV biosensing.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.2c07317