Radical Ring-Opening Copolymerization of Cyclic Ketene Acetals and Maleimides Affords Homogeneous Incorporation of Degradable Units
Radical copolymerization of donor–acceptor (D-A) monomer pairs has served as a versatile platform for the development of alternating copolymers. However, due to the use of conventional radical polymerization, the resulting copolymers have generally been limited to nondegradable vinyl polymers. By co...
Gespeichert in:
Veröffentlicht in: | ACS macro letters 2017-10, Vol.6 (10), p.1071-1077 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Radical copolymerization of donor–acceptor (D-A) monomer pairs has served as a versatile platform for the development of alternating copolymers. However, due to the use of conventional radical polymerization, the resulting copolymers have generally been limited to nondegradable vinyl polymers. By combining radical D-A copolymerization with radical ring-opening polymerization (rROP), we have synthesized an alternating copolymer with a high incorporation of degradable backbone units. Copolymerization of N-ethyl maleimide (NEtMI) with the cyclic ketene acetal (CKA) 2-methylene-4-phenyl-1,3-dioxolane (MPDL) was demonstrated to proceed in an alternating fashion, and controlled polymerization was achieved using reversible addition–fragmentation chain transfer (RAFT) polymerization. Spontaneous copolymerization, in the absence of an exogenous initiating source, occurred when the mixture of monomers was heated, presumably due to the large electron disparity between the comonomers. Chain-extension with styrene afforded well-defined P(MPDL-alt-NEtMI)-b-polystyrene copolymers, and degradation of the homopolymers and block copolymers showed complete breakdown of the alternating copolymer. |
---|---|
ISSN: | 2161-1653 2161-1653 |
DOI: | 10.1021/acsmacrolett.7b00572 |