Synthetic Lift-off Polymer beneath Layer-by-Layer Films for Surface-Mediated Drug Delivery

A broad range of biomaterials coatings and thin film drug delivery systems require a strategy for the immobilization, retention, and release of coatings from surfaces such as patches, inserts, and microneedles under physiological conditions. Here we report a polymer designed to provide a dynamic sur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS macro letters 2017-11, Vol.6 (11), p.1320-1324
Hauptverfasser: He, Yanpu, Li, Jiahe, Turvey, Michelle E, Funkenbusch, MayLin T, Hong, Celestine, Uppu, Divakara SSM, He, Hongkun, Irvine, Darrell J, Hammond, Paula T
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A broad range of biomaterials coatings and thin film drug delivery systems require a strategy for the immobilization, retention, and release of coatings from surfaces such as patches, inserts, and microneedles under physiological conditions. Here we report a polymer designed to provide a dynamic surface, one that first functions as a platform for electrostatic thin film assembly and releases the film once in an in vivo environment. Atom transfer radical polymerization (ATRP) was used to synthesize this polymer poly­(o-nitrobenzyl-methacrylate-co-hydroxyethyl-methacrylate-co-poly­(ethylene-glycol)-methacrylate) (PNHP), embedded beneath multilayered polyelectrolyte films. Such a base layer is designed to photochemically pattern negative charge onto a solid substrate, assist deposition of smooth layer-by-layer (LbL) polyelectrolyte in mildly acidic buffers and rapidly dissolve at physiological pH, thus lifting off the LbL films. To explore potential uses in the biomedical field, a lysozyme (Lys)/poly­(acrylic acid) (PAA) multilayer film was developed on PNHP-coated silicon wafers to construct prototype antimicrobial shunts. Film thickness was shown to grow exponentially with increasing deposition cycles, and effective drug loading and in vitro release was confirmed by the dose-dependent inhibition of Escherichia coli (E. coli) growth. The efficacy of this approach is further demonstrated in LbL-coated microscale needle arrays ultimately of interest for vaccine applications. Using PNHP as a photoresist, LbL films were confined to the tips of the microneedles, which circumvented drug waste at the patch base. Subsequent confocal images confirmed rapid LbL film implantation of PNHP at microneedle penetration sites on mouse skin. Furthermore, in human skin biopsies, we achieved efficient immune activation demonstrated by a rapid uptake of vaccine adjuvant from microneedle-delivered PNHP LbL film in up to 37% of antigen-presenting cells (APC), providing an unprecedented LbL microneedle platform for human vaccination.
ISSN:2161-1653
2161-1653
DOI:10.1021/acsmacrolett.7b00584