Di(cyanate Ester) Networks Based on Alternative Fluorinated Bisphenols with Extremely Low Water Uptake
A new polycyanurate network exhibiting extremely low moisture uptake has been produced via the treatment of perfluorocyclobutane-containing Bisphenol T with cyanogen bromide and subsequent thermal cyclotrimerization. The water uptake, at 0.56 ± 0.10% after immersion in water at 85 °C for 96 h, repre...
Gespeichert in:
Veröffentlicht in: | ACS macro letters 2014-01, Vol.3 (1), p.105-109 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A new polycyanurate network exhibiting extremely low moisture uptake has been produced via the treatment of perfluorocyclobutane-containing Bisphenol T with cyanogen bromide and subsequent thermal cyclotrimerization. The water uptake, at 0.56 ± 0.10% after immersion in water at 85 °C for 96 h, represents some of the most promising moisture resistance observed to date in polycyanurate networks. This excellent performance derives from a near optimal value of the glass transition at 190 °C at full cure. Superior dielectric loss characteristics compared to commercial polycyanurate networks based on Bisphenol E were also observed. Polycyanurate networks derived from this new monomer appear particularly well-suited for applications such as radomes and spacecrafts where polycyanurates are already widely recognized as providing outstanding properties. |
---|---|
ISSN: | 2161-1653 2161-1653 |
DOI: | 10.1021/mz400520s |