Single versus double occupancy solid lipid nanoparticles for delivery of the dual-acting bacteriocin, lacticin 3147
[Display omitted] The bacteriocin lacticin 3147 (lacticin) has shown activity against clinically relevant and antimicrobial-resistant bacteria such as Listeria monocytogenes and Clostridioides difficile. It is composed of two peptides, Ltnα and Ltnβ, which work together to form pores in the membrane...
Gespeichert in:
Veröffentlicht in: | European journal of pharmaceutics and biopharmaceutics 2022-07, Vol.176, p.199-210 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
The bacteriocin lacticin 3147 (lacticin) has shown activity against clinically relevant and antimicrobial-resistant bacteria such as Listeria monocytogenes and Clostridioides difficile. It is composed of two peptides, Ltnα and Ltnβ, which work together to form pores in the membrane of Gram-positive bacteria. Lacticin possesses poor aqueous solubility and is degraded by intestinal proteases. In a previous study, peptides encapsulated into solid lipid nanoparticles (SLNs) displayed activity in aqueous media and were protected from enzyme degradation but showed a low encapsulation efficiency (EE%) for Ltnα. In this study, however, lacticin was encapsulated into SLNs both individually (single occupancy, SLNα + SLNβ) and together (double occupancy SLNαβ) via a nanoprecipitation technique. This achieved SLNs of uniform size with an EE% above 87% for both peptides at loadings of 9 or 18 mg/g of lipid under single occupancy or double occupancy respectively. SLNαβ dispersions displayed more potent activity at 3.13 and 1.56 µg/ml lacticin than SLNα + SLNβ dispersions. Thus, the SLNαβ dispersion was chosen for further analysis. SLNαβ dispersions showed no cytotoxicity to endothelial cells. The SLN release media (fasted state simulated intestinal fluid; FaSSIF) retained activity at 1 h and 3 h indicating that lacticin may be sufficiently protected from proteases present in the duodenum. Finally, a reconstituted freeze-dried SLNαβ dispersion was stable and achieved 99.99% bacterial killing at 3.125 µg/ml lacticin. Thus, an SLN based lacticin delivery system was developed, potentially enabling oral administration of the bacteriocin to the colon to treat local infections such as C. difficile. |
---|---|
ISSN: | 0939-6411 1873-3441 |
DOI: | 10.1016/j.ejpb.2022.05.016 |