Atmospheric pollution, soil nutrients and climate effects on Mucoromycota arbuscular mycorrhizal fungi

Summary Fine root endophyte mycorrhizal fungi in the Endogonales (Mucoromycota arbuscular mycorrhizal fungi, M‐AMF) are now recognized as at least as important globally as Glomeromycota AMF (G‐AMF), yet little is known about the environmental factors which influence M‐AMF diversity and colonization,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental microbiology 2022-08, Vol.24 (8), p.3390-3404
Hauptverfasser: Kowal, J., Arrigoni, E., Jarvis, S., Zappala, S., Forbes, E., Bidartondo, M. I., Suz, L. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary Fine root endophyte mycorrhizal fungi in the Endogonales (Mucoromycota arbuscular mycorrhizal fungi, M‐AMF) are now recognized as at least as important globally as Glomeromycota AMF (G‐AMF), yet little is known about the environmental factors which influence M‐AMF diversity and colonization, partly because they typically only co‐colonize plants with G‐AMF. Wild populations of Lycopodiella inundata predominantly form mycorrhizas with M‐AMF and therefore allow focussed study of M‐AMF environmental drivers. Using microscopic examination and DNA sequencing we measured M‐AMF colonization and diversity over three consecutive seasons and modelled interactions between these response variables and environmental data. Significant relationships were found between M‐AMF colonization and soil S, P, C:N ratio, electrical conductivity, and the previously overlooked micronutrient Mn. Estimated N deposition was negatively related to M‐AMF colonization. Thirty‐nine Endogonales Operational Taxonomic Units (OTUs) were identified in L. inundata roots, a greater diversity than previously recognized in this plant. Endogonales OTU richness correlated negatively with soil C:N while community composition was mostly influenced by soil P. This study provides first evidence that M‐AMF have distinct ecological preferences in response to edaphic variables also related to air pollution. Future studies require site‐level atmospheric pollution monitoring to guide critical load policy for mycorrhizal fungi in heathlands and grasslands.
ISSN:1462-2912
1462-2920
DOI:10.1111/1462-2920.16040