A colorimetric smartphone-based platform for pesticides detection using Fe-N/C single-atom nanozyme as oxidase mimetics
In this study, a novel highly sensitive colorimetric platform has been designed for malathion assay based on Fe-N/C SAzyme. The as-synthesized SAzyme can directly oxidize 3,3´,5,5´-tetramethylbenzidine (TMB) to generate blue colored oxidized TMB. L-ascorbic acid-2-phosphate (AA2P), a substrate of ac...
Gespeichert in:
Veröffentlicht in: | Journal of hazardous materials 2022-08, Vol.436, p.129199-129199, Article 129199 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, a novel highly sensitive colorimetric platform has been designed for malathion assay based on Fe-N/C SAzyme. The as-synthesized SAzyme can directly oxidize 3,3´,5,5´-tetramethylbenzidine (TMB) to generate blue colored oxidized TMB. L-ascorbic acid-2-phosphate (AA2P), a substrate of acid phosphatase (ACP), could be hydrolyzed to AA, thereafter inhibit the oxidization reaction of TMB, leading to a conspicuous blue color fading. With the addition of malathion hindered the ACP activity and limited the AA production, resulting in the recovery of the catalytic activity of single-atom nanozyme. Under optimized operational conditions, a novel colorimetric assay has been designed for malathion detection with LOD of 0.42 nM. Besides, quantification of malathion in environmental and food samples was achieved based on the proposed strategy. In addition, the successfully integrated paper/smartphone sensor provided sensitive, and rapid, reliable detection of malathion with a LOD of 1 nM.
[Display omitted]
•Fe-N/C single-atom nanozyme possesses high oxidase mimetics activity.•Malathion can be sensitively detected.•This proposed strategy can be well applied in actual samples.•A paper-based colorimetric biosensor was established for portable detection. |
---|---|
ISSN: | 0304-3894 1873-3336 |
DOI: | 10.1016/j.jhazmat.2022.129199 |