Fully Conjugated Donor–Acceptor Block Copolymers for Organic Photovoltaics via Heck–Mizoroki Coupling
The development of facile routes to prepare fully conjugated block copolymers (BCPs) from diverse monomers is an important goal for advancing robust bulk-heterojunction (BHJ) organic photovoltaics (OPVs). Herein we introduce a synthetic strategy for step-growth BCPs employing 1,2-bis(trialkylstanny...
Gespeichert in:
Veröffentlicht in: | ACS macro letters 2019-02, Vol.8 (2), p.134-139 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The development of facile routes to prepare fully conjugated block copolymers (BCPs) from diverse monomers is an important goal for advancing robust bulk-heterojunction (BHJ) organic photovoltaics (OPVs). Herein we introduce a synthetic strategy for step-growth BCPs employing 1,2-bis(trialkylstannyl)ethene as one monomer, which, in addition to offering improved backbone planarity, directly yields a vinylene-terminated macromonomer suitable for Heck–Mizoroki coupling. The benefits of our strategy, which facilitates the preparation of functionalized macromonomers suitable for BCP synthesis, are demonstrated with a representative BCP based on a diketopyrrolopyrrole (DPP) copolymer coded pBDTTDPP as the donor block and a perylenediimide (PDI) copolymer coded as pPDIV as the acceptor block. Feed ratio optimization affords control over the macromonomer chain-end functionalities and allows for the selective formation of a tri-BCP consisting of pPDIV-b-pBDTTDPP-b-pPDIV, which is employed in a single-component BHJ OPV. Devices achieved a power conversion efficiency of 1.51% after thermal stress at 150 °C compared to 0.02% for a control device consisting of a comparable blend of pBDTTDPP and pPDIV. The difference in performance is ascribed to the morphological stability of the BHJ when using the BCP. |
---|---|
ISSN: | 2161-1653 2161-1653 |
DOI: | 10.1021/acsmacrolett.8b00932 |