Two-Dimensional Supersolid Formation in Dipolar Condensates
Dipolar condensates have recently been coaxed to form the long-sought supersolid phase. While one-dimensional supersolids may be prepared by triggering a roton instability, we find that such a procedure in two dimensions (2D) leads to a loss of both global phase coherence and crystalline order. Unli...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2022-05, Vol.128 (19), p.195302, Article 195302 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Dipolar condensates have recently been coaxed to form the long-sought supersolid phase. While one-dimensional supersolids may be prepared by triggering a roton instability, we find that such a procedure in two dimensions (2D) leads to a loss of both global phase coherence and crystalline order. Unlike in 1D, the 2D roton modes have little in common with the supersolid configuration. We develop a finite-temperature stochastic Gross-Pitaevskii theory that includes beyond-mean-field effects to explore the formation process in 2D and find that evaporative cooling directly into the supersolid phase-hence bypassing the first-order roton instability-can produce a robust supersolid in a circular trap. Importantly, the resulting supersolid is stable at the final nonzero temperature. We then experimentally produce a 2D supersolid in a near-circular trap through such an evaporative procedure. Our work provides insight into the process of supersolid formation in 2D and defines a realistic path to the formation of large two-dimensional supersolid arrays. |
---|---|
ISSN: | 0031-9007 1079-7114 1079-7114 |
DOI: | 10.1103/PhysRevLett.128.195302 |