Photocontrolled Growth of Cross-Linked Nanonetworks

We report the preparation of photoresponsive nanomaterials and the increase of their nanoscopic size through a “photogrowth” mechanism. The photogrowable nanonetworks (PGNNs) were synthesized by cross-linking two components, a thiolated acrylate copolymer and a symmetrical bismaleimide trithiocarbon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS macro letters 2018-06, Vol.7 (6), p.745-750
Hauptverfasser: Lampley, Michael W, Harth, Eva
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report the preparation of photoresponsive nanomaterials and the increase of their nanoscopic size through a “photogrowth” mechanism. The photogrowable nanonetworks (PGNNs) were synthesized by cross-linking two components, a thiolated acrylate copolymer and a symmetrical bismaleimide trithiocarbonate (TTC), utilizing thiol-maleimide click chemistry. With this strategy, nanonetwork growth was achieved through a photoinduced polymerization from the integrated trithiocarbonate by either direct photolysis or photoredox catalysis. Via direct photolysis, we generated a series of expanded particles by polymerizing methyl acrylate (MA) under irradiation with violet light (400 nm) over a period of 1, 3, and 6 h, starting from a 58 nm parent particle, resulting in particles of increased sizes of 77, 156, and 358 nm, respectively. Nanoparticle expansion reactions catalyzed by 10-phenylphenothiazine (PTH) were experienced to progress faster in 20 and 30 min to reach particle sizes of 195 and 300 nm. The addition of the photoredox catalyst to the expansion polymerizations with MA resulted in an increased control over the dispersity of the particles as well as of the promoted disassembly products. In this work, we demonstrated that nanoparticle structures designed as cross-linked networks with integrated trithiocarbonates can be expanded by photocontrolled radical polymerizations (photo-CRPs) in the presence or absence of a photoredox catalyst. These proof-of-concept experiments showcase the dynamic growth and integration of functional units into existing scaffolds and open up the possibility to prepare highly tailorable nanomaterials.
ISSN:2161-1653
2161-1653
DOI:10.1021/acsmacrolett.8b00290