A thermophilic phosphatase from Methanothermobacter marburgensis and its application to in vitro biosynthesis
Phosphatases catalyze the irreversible dephosphorylation of phosphate-containing compounds, and hence can be applied as the final enzymatic step for the synthesis of various biochemicals. However, the extensive substrate spectrums of phosphatases impose a great challenge for efficient biomanufacturi...
Gespeichert in:
Veröffentlicht in: | Enzyme and microbial technology 2022-09, Vol.159, p.110067-110067, Article 110067 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Phosphatases catalyze the irreversible dephosphorylation of phosphate-containing compounds, and hence can be applied as the final enzymatic step for the synthesis of various biochemicals. However, the extensive substrate spectrums of phosphatases impose a great challenge for efficient biomanufacturing. Characterization of phosphatases is therefore of extreme importance. In this study, MmPase, a putative HAD phosphatase from Methanothermobacter marburgensis, was expressed, purified, and characterized. Recombinant MmPase was readily expressed in Escherichia coli, and required metal ions such as Mn2+ or Mg2+ to function. MmPase worked optimally at 50 °C, pH 6.5, and exhibited a half-life of 6.5 h under this condition. Among all substrates tested, MmPase established the highest dephosphorylation activity against D-tagatose 6-phosphate, and was relatively specific for this substrate than for D-glucose 1-phosphate, D-glucose 6-phosphate, and D-fructose 6-phosphate. Therefore, MmPase was integrated into an in vitro synthetic enzymatic biosystem for the one-pot production of D-tagatose from maltodextrin, and achieved a product yield of 37.6%. Our studies of MmPase provided a promising strategy for the economic and efficient production of D-tagatose in the future.
•We examined the enzymatic properties of a putative phosphatase from M. marburgensis.•This enzyme was thermostable and relatively specific for D-tagatose 6-phosphate.•This enzyme was applied in an in vitro synthetic biosystem to produce D-tagatose. |
---|---|
ISSN: | 0141-0229 1879-0909 |
DOI: | 10.1016/j.enzmictec.2022.110067 |