Dynamic Crack Analysis Under Coupled Thermoelastic Assumption
A boundary element method using Laplace transform in time domain is developed for the analysis of fracture mechanic under coupled thermoelastic assumption. The transient coupled thermoelastic field is solved without need for domain discretization. The singular behavior of the temperature and displac...
Gespeichert in:
Veröffentlicht in: | Journal of applied mechanics 2001-07, Vol.68 (4), p.584-588 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A boundary element method using Laplace transform in time domain is developed for the analysis of fracture mechanic under coupled thermoelastic assumption. The transient coupled thermoelastic field is solved without need for domain discretization. The singular behavior of the temperature and displacement fields in the vicinity of the crack tip is modeled by quarter-point elements. Thermal dynamic stress intensity factors for mode I are evaluated from computed nodal values, using the well-known displacement and traction formulas. The accuracy of the method is investigated through comparison of the results with the available data in literature. The conditions where the inertia term plays an important role is discussed and variations of the dynamic stress intensity factor is investigated. |
---|---|
ISSN: | 0021-8936 1528-9036 |
DOI: | 10.1115/1.1364490 |