Three-Dimensional Multilayered Nanostructures from Crosslinkable Block Copolymers
Block copolymer (BCP) lithography has generally been synonymous to one- or two-dimensional single layered lithographic templates as a means to fabricate simple nanoscaled structures. Recently, the rapidly increasing demand for complex nanostructures and the corresponding evolution in BCP lithography...
Gespeichert in:
Veröffentlicht in: | ACS macro letters 2016-03, Vol.5 (3), p.287-291 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Block copolymer (BCP) lithography has generally been synonymous to one- or two-dimensional single layered lithographic templates as a means to fabricate simple nanoscaled structures. Recently, the rapidly increasing demand for complex nanostructures and the corresponding evolution in BCP lithography have led to three-dimensional (3D) BCP nanostructures, which can be fabricated in various ways such as directed self-assembly or stacking of cross-linked BCP patterns. This review covers the recent advances in the 3D multilayered structures from cross-linkable BCPs, which provide an easy and robust means for integrating various BCP structures into one scaffold. In this case, wetting-optimized adjustment of BCP microdomains at the layer interface plays a critical role in the formation of well-defined 3D multilayer nanostructures. |
---|---|
ISSN: | 2161-1653 2161-1653 |
DOI: | 10.1021/acsmacrolett.5b00908 |