A note on the complexity of Dijkstra's algorithm for graphs with weighted vertices

Let G(V, E) be a directed graph in which each vertex has a nonnegative weight. The cost of a path between two vertices in G is the sum of the weights of the vertices on that path. We show that, for such graphs, the time complexity of Dijkstra's algorithm (E.W. Dijkstra, 1959), implemented with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computers 1998-02, Vol.47 (2), p.263-263
1. Verfasser: Barbehenn, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G(V, E) be a directed graph in which each vertex has a nonnegative weight. The cost of a path between two vertices in G is the sum of the weights of the vertices on that path. We show that, for such graphs, the time complexity of Dijkstra's algorithm (E.W. Dijkstra, 1959), implemented with a binary heap, is O(|E|+|V|log|V|).
ISSN:0018-9340
1557-9956
DOI:10.1109/12.663776