On orthogonal polynomials for certain nondefinite linear functionals

We consider the non-definite linear functionals L n[f]=∫ R w(x)f (n)(x) dx and prove the nonexistence of orthogonal polynomials, with all zeros real, in several cases. The proofs are based on the connection with moment preserving spline approximation.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 1998-11, Vol.99 (1), p.119-128
1. Verfasser: Ehrich, Sven
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the non-definite linear functionals L n[f]=∫ R w(x)f (n)(x) dx and prove the nonexistence of orthogonal polynomials, with all zeros real, in several cases. The proofs are based on the connection with moment preserving spline approximation.
ISSN:0377-0427
1879-1778
DOI:10.1016/S0377-0427(98)00150-2