On orthogonal polynomials for certain nondefinite linear functionals
We consider the non-definite linear functionals L n[f]=∫ R w(x)f (n)(x) dx and prove the nonexistence of orthogonal polynomials, with all zeros real, in several cases. The proofs are based on the connection with moment preserving spline approximation.
Gespeichert in:
Veröffentlicht in: | Journal of computational and applied mathematics 1998-11, Vol.99 (1), p.119-128 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the non-definite linear functionals
L
n[f]=∫
R
w(x)f
(n)(x)
dx
and prove the nonexistence of orthogonal polynomials, with all zeros real, in several cases. The proofs are based on the connection with moment preserving spline approximation. |
---|---|
ISSN: | 0377-0427 1879-1778 |
DOI: | 10.1016/S0377-0427(98)00150-2 |