Mesophase Transformation in Amphiphilic Hyperbranched Polymers Induced by Transition Metal Ion Complexation. Creating Well-Defined Metallo-Supramolecular Assemblies from “Ill-Defined” Building Blocks

Self-organized metallo-supramolecular heterostructures have potential applications that include molecular electronics, photovoltaics, and magnetic devices, among other examples. The main challenge that scientists typically face when designing advanced supramolecular materials is to achieve structura...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS macro letters 2015-01, Vol.4 (1), p.94-100
Hauptverfasser: Picco, Agustín S, Knoll, Wolfgang, Ceolín, Marcelo, Azzaroni, Omar
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Self-organized metallo-supramolecular heterostructures have potential applications that include molecular electronics, photovoltaics, and magnetic devices, among other examples. The main challenge that scientists typically face when designing advanced supramolecular materials is to achieve structurally defined assemblies by resolving conflicting demands on the topological and/or chemical features of the constituting building blocks. Accordingly, the formation of well-defined metallo-supramolecular arrays using ill-defined, highly polydisperse, self-assemblable starting compounds marks a profound departure from traditional supramolecular paradigms. The present work describes the first observation of spontaneous mesophase transformation of well-defined metallo-supramolecular assemblies in solution as a result of the complexation of transition metal ions into the ionophilic domains of highly branched unimolecular micelles constituted of N-acylated hyperbranched polyethylenimine. Experimental results based on a combination of different synchrotron-based techniques provide unprecedented experimental evidence revealing that ion-induced self-assembly of amphiphilic hyperbranched polymers can be used to achieve highly ordered metallo-supramolecular structures not only in solution but also on solid surfaces. We believe that this emerging conceptual framework can open extremely interesting new synthetic and technological opportunities in the area of self-assembly of well-defined metallo-supramolecular architectures obtained from building blocks with poor structural regularity but easily provided in large quantities by simple and inexpensive preparative chemistries.
ISSN:2161-1653
2161-1653
DOI:10.1021/mz500688r