Quercetin ameliorates oxidative stress‑induced cell apoptosis of seminal vesicles via activating Nrf2 in type 1 diabetic rats

It was known that diabetes may affect the male reproductive function by inhibiting the secretion of male accessory glands including seminal vesicles. Increased cell apoptosis induced by oxidative stress is thought to be an important pathological change in the seminal vesicles in diabetic patients. Q...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedicine & pharmacotherapy 2022-07, Vol.151, p.113108-113108, Article 113108
Hauptverfasser: Dong, Bingzheng, Shi, Zhenduo, Dong, Yang, Chen, Jiangang, Wu, Zhuo-Xun, Wu, Wei, Chen, Zhe-Sheng, Han, Conghui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It was known that diabetes may affect the male reproductive function by inhibiting the secretion of male accessory glands including seminal vesicles. Increased cell apoptosis induced by oxidative stress is thought to be an important pathological change in the seminal vesicles in diabetic patients. Quercetin is a potent anti-oxidative bioflavonoid. In this study, we explore the effect of quercetin on cell apoptosis of seminal vesicles and its underlying mechanism. The STZ-induced type 1 diabetic rat model was established. Three doses (low, medium and high) of quercetin were administrated to the STZ-induced type 1 diabetic rats for 4 months. Fasting blood glucose, the fructose in seminal plasma, total antioxidant capacity (T-AOC) and malondialdehyde (MDA) in seminal vesicles were determined by colorimetric method. Nuclear transcription factor- Nrf2 was observed by immunofluorescent staining. Biomarkers related to cell apoptosis, such as Bcl-2, Bax and cleaved -Caspase3 were measured by Western blotting and immumohistochemical staining. The body weight and seminal vesicle weight indexes were also determined. The results showed that T-AOC and Nrf2 were decreased, the levels of MDA were increased, the cleaved Caspase-3 was increased and the ratio of Bax to BCL-2 was decreased in seminal vesicles of diabetic rats, along with the severe hyperglycemia. When diabetic rats were treated by quercetin for 4 months, all the indexes were reversed at different degree except the fasting blood glucose. Our results suggested that quercetin could ameliorate oxidative stress‑induced cell apoptosis of seminal vesicles via inhibiting Nrf2 in type 1 diabetic rats, which indicated that quercetin could be used for preventing lesions of seminal vesicles in type 1 diabetes.
ISSN:0753-3322
1950-6007
DOI:10.1016/j.biopha.2022.113108