Creep crack growth in welded components — a numerical study and comparison with the R5 procedures
In the present study, creep crack growth (CCG) in a circumferentially welded low alloyed pipe is numerically investigated for a number of different combinations of weldment constituent material properties. A creep ductility based damage model describes the accumulation of creep damage ahead of the c...
Gespeichert in:
Veröffentlicht in: | International journal of pressure vessels and piping 2001-11, Vol.78 (11), p.995-1002 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the present study, creep crack growth (CCG) in a circumferentially welded low alloyed pipe is numerically investigated for a number of different combinations of weldment constituent material properties. A creep ductility based damage model describes the accumulation of creep damage ahead of the crack tip where a constraint parameter and the creep strain rate perpendicular to the crack plane are used as characterising parameters. It is assumed that a fully circumferential creep crack, located in the heat affected zone with a depth of one quarter of the pipe thickness, is growing at a constant rate from the outer surface towards the inside. The numerical results reveal that not only the properties of the zone containing the crack, but also the deformation properties of the surrounding material influence the CCG behaviour. This influence can be noted on the characterising parameters used for the CCG rate predictions as well as on the CCG rate itself. The mismatch influence on corresponding
C
∗
values is, however, marginal. This indicates that determination of the CCG rate in weldments, based on the
C
∗
value only, may result in uncertain estimates.
The numerically investigated cases are also assessed by use of the R5 procedures for the sake of comparison. Considering the stress re-distribution, due to the mismatch effect, the CCG rate is determined for the different weldment configurations. The comparison shows that the assumption of plane strain or plane stress conditions in the R5 analysis is essential for the agreement of the results between R5 and the two-parameter approach. Assuming plane stress conditions at the crack tip results in a relatively good agreement for the axial stress dominated cases investigated. However, for the hoop stress dominated cases, the R5 procedures predict higher CCG rates by an order of magnitude. |
---|---|
ISSN: | 0308-0161 1879-3541 |
DOI: | 10.1016/S0308-0161(01)00114-4 |