Hybrids of polyphenolic acids and xanthone, the potential preventive and therapeutic effects on PD: Design, synthesis, in vitro anti-aggregation of α-synuclein, and disaggregation against the existed α-synuclein oligomer and fibril
[Display omitted] The misfolding and aggregation of α-Syn are the central mechanism linking and facilitating the other pathological mechanisms of PD. Maintaining α-Syn proteostasis by suitable inhibitors is an effective means to prevent PD. Disintegrating the neurotoxic oligomers and fibrils into th...
Gespeichert in:
Veröffentlicht in: | Bioorganic & medicinal chemistry 2022-07, Vol.66, p.116818-116818, Article 116818 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
The misfolding and aggregation of α-Syn are the central mechanism linking and facilitating the other pathological mechanisms of PD. Maintaining α-Syn proteostasis by suitable inhibitors is an effective means to prevent PD. Disintegrating the neurotoxic oligomers and fibrils into the normal functional α-Syn by inhibitors is a more efficient way for PD treatment. This work synthesized two series hybrids of polyphenolic acids and xanthone. The hybrids possess a sheet-like conjugated skeleton and higher binding energies with α-Syn residues. Some compounds present well α-Syn aggregation inhibitory activities in vitro (IC50 down to 2.58 μM). The inhibitory action goes throughout the aggregation process from lag to the stationary phase by stabilizing α-Syn proteostasis conformation and preventing β-sheets aggregation. The candidate compounds with appropriate LogP values (2.02–3.11) present good disintegration abilities against the existed α-Syn oligomers and fibrils. The preliminary mechanism studies suggest that the inhibitors could quickly and randomly bind to the specific site closed to the β-sheet domain in the fibril, resulting in unstable and collapse of the protein fibril, yielding a complex system with aggregates of different sizes and monomers. |
---|---|
ISSN: | 0968-0896 1464-3391 |
DOI: | 10.1016/j.bmc.2022.116818 |