Organic–Inorganic Hybrid Nanoparticles via Photoinduced Micellation and Siloxane Core Cross-Linking of Stimuli-Responsive Copolymers
Photoacid-induced siloxane cross-linking of stimuli-responsive copolymer micelles allows the synthesis of well-defined organic–inorganic hybrid nanoparticles. Two conceptually different synthetic approaches are presented, both via photoinduced cross-linking of poly(4-hydroxystyrene-block-styrene) mi...
Gespeichert in:
Veröffentlicht in: | ACS macro letters 2013-02, Vol.2 (2), p.121-124 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Photoacid-induced siloxane cross-linking of stimuli-responsive copolymer micelles allows the synthesis of well-defined organic–inorganic hybrid nanoparticles. Two conceptually different synthetic approaches are presented, both via photoinduced cross-linking of poly(4-hydroxystyrene-block-styrene) micelles and via one-pot photoacid-catalyzed micelle formation and siloxane cross-linking of poly(4-tert-butoxystyrene-block-styrene). The multistep synthetic route showed intermicellar cross-linking leading to agglomerates. In contrast to this, the formation of the nanoparticles via the one-pot synthesis yielded well-defined structures. The use of different siloxane cross-linking agents and their effects on the properties of the cross-linked micellar structures have been evaluated. Scanning electron microscopy and differential scanning calorimetry indicate rigid core cross-linked nanoparticles. Their size, molar mass, and swelling behavior were analyzed by dynamic and static light scattering. Cyclic siloxane cross-linking agents lead to residual CC double bonds within the nanoparticle core that allow postsynthetic modification by, e.g., thiol–ene click reactions. |
---|---|
ISSN: | 2161-1653 2161-1653 |
DOI: | 10.1021/mz3006439 |