A novel catechin electrochemical sensor based on a two-dimensional MOFs material derivative Zn doped carbon nanosheets and multi-walled carbon nanotubes composite film
In this paper, the precursor ZIF-8/NaCl composite material was successfully synthesized by the in-situ synthesis method, and the two-dimensional zinc doped carbon nanosheets (Zn CNs) were obtained after heat treatment of the precursor. Zn CNs were electrodeposited on carboxylated carbon nanotubes (M...
Gespeichert in:
Veröffentlicht in: | Talanta (Oxford) 2022-08, Vol.246, p.123520-123520, Article 123520 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, the precursor ZIF-8/NaCl composite material was successfully synthesized by the in-situ synthesis method, and the two-dimensional zinc doped carbon nanosheets (Zn CNs) were obtained after heat treatment of the precursor. Zn CNs were electrodeposited on carboxylated carbon nanotubes (MWCNTs-COOH) modified glass carbon electrode (GCE) to construct an electrochemical sensor for catechins. The materials are characterized using scanning electron microscope, X-ray photoelectron spectroscopy, and nitrogen adsorption-desorption isotherm. Zn CNs/MWCNTs-COOH composite provide the sensor with excellent electrochemical and electrocatalytic performance. Therefore, the sensor has a wide detection range (30.0–738 nM) and a low detection limit (LOD = 10.0 nM) for catechins. The effectiveness of the sensor was also verified in actual sample detection with good stability and accuracy. This study may provide a feasible solution for the detection of catechin.
(A) Description of Zn CNs composite material synthesis. (B) Analysis Principles of electrochemical sensors based on Composite Materials. [Display omitted]
•The Zn CNs/MWCNTs-COOH nanocomposite was firstly prepared.•The electrochemical sensor based on the composite exhibited outstanding electrochemical performance for catechins.•This sensor was successfully employed to detect catechins tea extracts.•This sensor has wide linear detection range with low LOD of 10 nM.•This sensor exhibits good repeatability and stability. |
---|---|
ISSN: | 0039-9140 1873-3573 |
DOI: | 10.1016/j.talanta.2022.123520 |