Polycaprolactone-blended cellulose acetate thin-film composite membrane for dairy waste treatment using forward osmosis

In recent years new sustainable technology for wastewater treatment has emerged, and among them, forward osmosis (FO) has gained importance. FO utilizes osmotic pressure difference across the semipermeable membrane as the driving force to concentrate the wastewater. Further, the surface and physical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2022-12, Vol.29 (57), p.86418-86426
Hauptverfasser: Chandran, Akash M., Tayal, Ekta, Mural, Prasanna Kumar S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In recent years new sustainable technology for wastewater treatment has emerged, and among them, forward osmosis (FO) has gained importance. FO utilizes osmotic pressure difference across the semipermeable membrane as the driving force to concentrate the wastewater. Further, the surface and physical properties of the semipermeable FO membrane play a crucial role during the FO process in reducing the internal concentration polarization. In general, FO membranes are prepared using cellulose acetate (CA) polymer due to their high hydrophilic nature. However, CA membranes are mechanically unstable for the FO process. Hence, to increase the mechanical strength and flexibility of CA, other polymers are blended along with it. In this present study, we have prepared a phase-inversion membrane using CA blended with polycaprolactone (PCL) polymers. Further, to increase the hydrophilicity of the membrane, a thin-film composite (TFC) layer of polyamide is coated using interfacial polymerization. To increase the antifouling properties of the membrane, graphene oxide (GO) and copper oxide (CuO) nanoparticles (NPs) are incorporated inside the TFC matrix. The prepared NPs and membrane were characterized using Fourier-transform infrared spectroscopy (FTIR), wide-angle X-ray scattering (WAXD), and contact angle. Further, the GO-CuO incorporated TFC coating has improved the hydrophilicity and antifouling properties of the membrane. It was observed that the water flux has increased up to 5 LMH, and reverse solute flux has reduced to 4 GMH. Further, the membrane was utilized to concentrate in situ prepared dairy waste. It was observed that after 60 min of the FO process, the concentration of dairy waste had increased to 23%, with a concentration factor of 0.903. Thus, a prepared TFC phase inversion membrane is potential for dairy wastewater treatment.
ISSN:0944-1344
1614-7499
DOI:10.1007/s11356-022-20813-x