Prediction of Drug–Drug Interactions After Esketamine Intranasal Administration Using a Physiologically Based Pharmacokinetic Model
Background and Objective A physiologically based pharmacokinetic (PBPK) modeling approach for esketamine and its metabolite noresketamine after esketamine intranasal administration was developed to aid the prediction of drug–drug interactions (DDIs) during the clinical development of esketamine nasa...
Gespeichert in:
Veröffentlicht in: | Clinical pharmacokinetics 2022-08, Vol.61 (8), p.1115-1128 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1128 |
---|---|
container_issue | 8 |
container_start_page | 1115 |
container_title | Clinical pharmacokinetics |
container_volume | 61 |
creator | Willemin, Marie-Emilie Zannikos, Peter Mannens, Geert de Zwart, Loeckie Snoeys, Jan |
description | Background and Objective
A physiologically based pharmacokinetic (PBPK) modeling approach for esketamine and its metabolite noresketamine after esketamine intranasal administration was developed to aid the prediction of drug–drug interactions (DDIs) during the clinical development of esketamine nasal spray (SPRAVATO
®
). This article describes the development of the PBPK model to predict esketamine and noresketamine kinetics after intranasal administration of esketamine and its verification and application in the prediction of prospective DDIs with esketamine using models of index perpetrator and victim drugs.
Methods
The intranasal PBPK (IN-PBPK) models for esketamine/noresketamine were constructed in Simcyp
®
v14.1 by combining the oral and intravenous esketamine PBPK models, with the dose divided in the ratio 57.7/42.3. Verification of the model was based on comparing the pharmacokinetics and DDI simulations with observed data in healthy volunteers.
Results
The simulated and observed (171 healthy volunteers) plasma pharmacokinetic profiles of intranasal esketamine/noresketamine showed a good match. The relative contributions of different cytochromes P450 (CYPs), mainly CYP3A4 and CYP2B6, involved in esketamine/noresketamine clearance was captured correctly in the IN-PBPK model using the DDI clinical studies of intranasal esketamine with clarithromycin and rifampicin and a published DDI study of oral esketamine with ticlopidine. The induction potential of esketamine toward CYP3A4 was also well captured. Inhibition of intranasal esketamine in the presence of ticlopidine was predicted to be not clinically relevant. Different scenarios tested with esketamine as a CYP3A4 perpetrator of midazolam also predicted the absence of clinically relevant CYP3A4 interactions.
Conclusion
This PBPK model of the intranasal route adequately described the pharmacokinetics and DDI of intranasal esketamine/noresketamine with potential perpetrator and victim drugs. This work was used to support regulatory submissions of SPRAVATO
®
. |
doi_str_mv | 10.1007/s40262-022-01123-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2665560590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2665560590</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-d893eb1ba8c14b7e3ad0d21783de910dc94c240133fc716391661d286f646bcf3</originalsourceid><addsrcrecordid>eNp9kb1uHCEUhVGUKF47eYEUEVIaN5NwgYGh3PhfchQXcY0YYDbYM4MNM8V2bvIEeUM_idldJ5ZSpEBX957vHhAHoQ9APgMh8kvmhApaEVoOAGUVf4UWAFJVoKh4jRaEAa1qJdge2s_5hhDSUELeoj1W11I1lC_Qr6vkXbBTiCOOHT5O8-rx4fem4Itx8slspYyXXWnwSb71kxnC6DdqMqPJpsdLVyYhl35rc53DuMIGX_1c5xD7uArW9P0afzXZuzI1aTA23haTKVj8LTrfv0NvOtNn__65HqDr05MfR-fV5fezi6PlZWWZrKfKNYr5FlrTWOCt9Mw44ijIhjmvgDiruKWcAGOdlSCYAiHA0UZ0govWduwAHe5871K8n32e9BCy9X1vRh_nrKkQdS1IrUhBP_2D3sQ5jeV1msry-0oBl4WiO8qmmHPynb5LYTBprYHoTUh6F5IuIeltSJqXpY_P1nM7ePd35U8qBWA7IBdpXPn0cvd_bJ8APome9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700799147</pqid></control><display><type>article</type><title>Prediction of Drug–Drug Interactions After Esketamine Intranasal Administration Using a Physiologically Based Pharmacokinetic Model</title><source>SpringerLink Journals - AutoHoldings</source><creator>Willemin, Marie-Emilie ; Zannikos, Peter ; Mannens, Geert ; de Zwart, Loeckie ; Snoeys, Jan</creator><creatorcontrib>Willemin, Marie-Emilie ; Zannikos, Peter ; Mannens, Geert ; de Zwart, Loeckie ; Snoeys, Jan</creatorcontrib><description>Background and Objective
A physiologically based pharmacokinetic (PBPK) modeling approach for esketamine and its metabolite noresketamine after esketamine intranasal administration was developed to aid the prediction of drug–drug interactions (DDIs) during the clinical development of esketamine nasal spray (SPRAVATO
®
). This article describes the development of the PBPK model to predict esketamine and noresketamine kinetics after intranasal administration of esketamine and its verification and application in the prediction of prospective DDIs with esketamine using models of index perpetrator and victim drugs.
Methods
The intranasal PBPK (IN-PBPK) models for esketamine/noresketamine were constructed in Simcyp
®
v14.1 by combining the oral and intravenous esketamine PBPK models, with the dose divided in the ratio 57.7/42.3. Verification of the model was based on comparing the pharmacokinetics and DDI simulations with observed data in healthy volunteers.
Results
The simulated and observed (171 healthy volunteers) plasma pharmacokinetic profiles of intranasal esketamine/noresketamine showed a good match. The relative contributions of different cytochromes P450 (CYPs), mainly CYP3A4 and CYP2B6, involved in esketamine/noresketamine clearance was captured correctly in the IN-PBPK model using the DDI clinical studies of intranasal esketamine with clarithromycin and rifampicin and a published DDI study of oral esketamine with ticlopidine. The induction potential of esketamine toward CYP3A4 was also well captured. Inhibition of intranasal esketamine in the presence of ticlopidine was predicted to be not clinically relevant. Different scenarios tested with esketamine as a CYP3A4 perpetrator of midazolam also predicted the absence of clinically relevant CYP3A4 interactions.
Conclusion
This PBPK model of the intranasal route adequately described the pharmacokinetics and DDI of intranasal esketamine/noresketamine with potential perpetrator and victim drugs. This work was used to support regulatory submissions of SPRAVATO
®
.</description><identifier>ISSN: 0312-5963</identifier><identifier>EISSN: 1179-1926</identifier><identifier>DOI: 10.1007/s40262-022-01123-4</identifier><identifier>PMID: 35579824</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Antidepressants ; Bioavailability ; Drug dosages ; Drug interactions ; Enzymes ; Internal Medicine ; Medicine ; Medicine & Public Health ; Mental depression ; Metabolism ; Metabolites ; Oral administration ; Original Research Article ; Pharmacokinetics ; Pharmacology/Toxicology ; Pharmacotherapy ; Plasma ; Simulation ; Volunteers</subject><ispartof>Clinical pharmacokinetics, 2022-08, Vol.61 (8), p.1115-1128</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022</rights><rights>2022. The Author(s), under exclusive licence to Springer Nature Switzerland AG.</rights><rights>Copyright Springer Nature B.V. Aug 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-d893eb1ba8c14b7e3ad0d21783de910dc94c240133fc716391661d286f646bcf3</citedby><cites>FETCH-LOGICAL-c375t-d893eb1ba8c14b7e3ad0d21783de910dc94c240133fc716391661d286f646bcf3</cites><orcidid>0000-0002-1974-1170</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40262-022-01123-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40262-022-01123-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35579824$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Willemin, Marie-Emilie</creatorcontrib><creatorcontrib>Zannikos, Peter</creatorcontrib><creatorcontrib>Mannens, Geert</creatorcontrib><creatorcontrib>de Zwart, Loeckie</creatorcontrib><creatorcontrib>Snoeys, Jan</creatorcontrib><title>Prediction of Drug–Drug Interactions After Esketamine Intranasal Administration Using a Physiologically Based Pharmacokinetic Model</title><title>Clinical pharmacokinetics</title><addtitle>Clin Pharmacokinet</addtitle><addtitle>Clin Pharmacokinet</addtitle><description>Background and Objective
A physiologically based pharmacokinetic (PBPK) modeling approach for esketamine and its metabolite noresketamine after esketamine intranasal administration was developed to aid the prediction of drug–drug interactions (DDIs) during the clinical development of esketamine nasal spray (SPRAVATO
®
). This article describes the development of the PBPK model to predict esketamine and noresketamine kinetics after intranasal administration of esketamine and its verification and application in the prediction of prospective DDIs with esketamine using models of index perpetrator and victim drugs.
Methods
The intranasal PBPK (IN-PBPK) models for esketamine/noresketamine were constructed in Simcyp
®
v14.1 by combining the oral and intravenous esketamine PBPK models, with the dose divided in the ratio 57.7/42.3. Verification of the model was based on comparing the pharmacokinetics and DDI simulations with observed data in healthy volunteers.
Results
The simulated and observed (171 healthy volunteers) plasma pharmacokinetic profiles of intranasal esketamine/noresketamine showed a good match. The relative contributions of different cytochromes P450 (CYPs), mainly CYP3A4 and CYP2B6, involved in esketamine/noresketamine clearance was captured correctly in the IN-PBPK model using the DDI clinical studies of intranasal esketamine with clarithromycin and rifampicin and a published DDI study of oral esketamine with ticlopidine. The induction potential of esketamine toward CYP3A4 was also well captured. Inhibition of intranasal esketamine in the presence of ticlopidine was predicted to be not clinically relevant. Different scenarios tested with esketamine as a CYP3A4 perpetrator of midazolam also predicted the absence of clinically relevant CYP3A4 interactions.
Conclusion
This PBPK model of the intranasal route adequately described the pharmacokinetics and DDI of intranasal esketamine/noresketamine with potential perpetrator and victim drugs. This work was used to support regulatory submissions of SPRAVATO
®
.</description><subject>Antidepressants</subject><subject>Bioavailability</subject><subject>Drug dosages</subject><subject>Drug interactions</subject><subject>Enzymes</subject><subject>Internal Medicine</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Mental depression</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Oral administration</subject><subject>Original Research Article</subject><subject>Pharmacokinetics</subject><subject>Pharmacology/Toxicology</subject><subject>Pharmacotherapy</subject><subject>Plasma</subject><subject>Simulation</subject><subject>Volunteers</subject><issn>0312-5963</issn><issn>1179-1926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kb1uHCEUhVGUKF47eYEUEVIaN5NwgYGh3PhfchQXcY0YYDbYM4MNM8V2bvIEeUM_idldJ5ZSpEBX957vHhAHoQ9APgMh8kvmhApaEVoOAGUVf4UWAFJVoKh4jRaEAa1qJdge2s_5hhDSUELeoj1W11I1lC_Qr6vkXbBTiCOOHT5O8-rx4fem4Itx8slspYyXXWnwSb71kxnC6DdqMqPJpsdLVyYhl35rc53DuMIGX_1c5xD7uArW9P0afzXZuzI1aTA23haTKVj8LTrfv0NvOtNn__65HqDr05MfR-fV5fezi6PlZWWZrKfKNYr5FlrTWOCt9Mw44ijIhjmvgDiruKWcAGOdlSCYAiHA0UZ0govWduwAHe5871K8n32e9BCy9X1vRh_nrKkQdS1IrUhBP_2D3sQ5jeV1msry-0oBl4WiO8qmmHPynb5LYTBprYHoTUh6F5IuIeltSJqXpY_P1nM7ePd35U8qBWA7IBdpXPn0cvd_bJ8APome9A</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Willemin, Marie-Emilie</creator><creator>Zannikos, Peter</creator><creator>Mannens, Geert</creator><creator>de Zwart, Loeckie</creator><creator>Snoeys, Jan</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1974-1170</orcidid></search><sort><creationdate>20220801</creationdate><title>Prediction of Drug–Drug Interactions After Esketamine Intranasal Administration Using a Physiologically Based Pharmacokinetic Model</title><author>Willemin, Marie-Emilie ; Zannikos, Peter ; Mannens, Geert ; de Zwart, Loeckie ; Snoeys, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-d893eb1ba8c14b7e3ad0d21783de910dc94c240133fc716391661d286f646bcf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antidepressants</topic><topic>Bioavailability</topic><topic>Drug dosages</topic><topic>Drug interactions</topic><topic>Enzymes</topic><topic>Internal Medicine</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Mental depression</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Oral administration</topic><topic>Original Research Article</topic><topic>Pharmacokinetics</topic><topic>Pharmacology/Toxicology</topic><topic>Pharmacotherapy</topic><topic>Plasma</topic><topic>Simulation</topic><topic>Volunteers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Willemin, Marie-Emilie</creatorcontrib><creatorcontrib>Zannikos, Peter</creatorcontrib><creatorcontrib>Mannens, Geert</creatorcontrib><creatorcontrib>de Zwart, Loeckie</creatorcontrib><creatorcontrib>Snoeys, Jan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical pharmacokinetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Willemin, Marie-Emilie</au><au>Zannikos, Peter</au><au>Mannens, Geert</au><au>de Zwart, Loeckie</au><au>Snoeys, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of Drug–Drug Interactions After Esketamine Intranasal Administration Using a Physiologically Based Pharmacokinetic Model</atitle><jtitle>Clinical pharmacokinetics</jtitle><stitle>Clin Pharmacokinet</stitle><addtitle>Clin Pharmacokinet</addtitle><date>2022-08-01</date><risdate>2022</risdate><volume>61</volume><issue>8</issue><spage>1115</spage><epage>1128</epage><pages>1115-1128</pages><issn>0312-5963</issn><eissn>1179-1926</eissn><abstract>Background and Objective
A physiologically based pharmacokinetic (PBPK) modeling approach for esketamine and its metabolite noresketamine after esketamine intranasal administration was developed to aid the prediction of drug–drug interactions (DDIs) during the clinical development of esketamine nasal spray (SPRAVATO
®
). This article describes the development of the PBPK model to predict esketamine and noresketamine kinetics after intranasal administration of esketamine and its verification and application in the prediction of prospective DDIs with esketamine using models of index perpetrator and victim drugs.
Methods
The intranasal PBPK (IN-PBPK) models for esketamine/noresketamine were constructed in Simcyp
®
v14.1 by combining the oral and intravenous esketamine PBPK models, with the dose divided in the ratio 57.7/42.3. Verification of the model was based on comparing the pharmacokinetics and DDI simulations with observed data in healthy volunteers.
Results
The simulated and observed (171 healthy volunteers) plasma pharmacokinetic profiles of intranasal esketamine/noresketamine showed a good match. The relative contributions of different cytochromes P450 (CYPs), mainly CYP3A4 and CYP2B6, involved in esketamine/noresketamine clearance was captured correctly in the IN-PBPK model using the DDI clinical studies of intranasal esketamine with clarithromycin and rifampicin and a published DDI study of oral esketamine with ticlopidine. The induction potential of esketamine toward CYP3A4 was also well captured. Inhibition of intranasal esketamine in the presence of ticlopidine was predicted to be not clinically relevant. Different scenarios tested with esketamine as a CYP3A4 perpetrator of midazolam also predicted the absence of clinically relevant CYP3A4 interactions.
Conclusion
This PBPK model of the intranasal route adequately described the pharmacokinetics and DDI of intranasal esketamine/noresketamine with potential perpetrator and victim drugs. This work was used to support regulatory submissions of SPRAVATO
®
.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>35579824</pmid><doi>10.1007/s40262-022-01123-4</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1974-1170</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0312-5963 |
ispartof | Clinical pharmacokinetics, 2022-08, Vol.61 (8), p.1115-1128 |
issn | 0312-5963 1179-1926 |
language | eng |
recordid | cdi_proquest_miscellaneous_2665560590 |
source | SpringerLink Journals - AutoHoldings |
subjects | Antidepressants Bioavailability Drug dosages Drug interactions Enzymes Internal Medicine Medicine Medicine & Public Health Mental depression Metabolism Metabolites Oral administration Original Research Article Pharmacokinetics Pharmacology/Toxicology Pharmacotherapy Plasma Simulation Volunteers |
title | Prediction of Drug–Drug Interactions After Esketamine Intranasal Administration Using a Physiologically Based Pharmacokinetic Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A44%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20Drug%E2%80%93Drug%20Interactions%20After%20Esketamine%20Intranasal%20Administration%20Using%20a%20Physiologically%20Based%20Pharmacokinetic%20Model&rft.jtitle=Clinical%20pharmacokinetics&rft.au=Willemin,%20Marie-Emilie&rft.date=2022-08-01&rft.volume=61&rft.issue=8&rft.spage=1115&rft.epage=1128&rft.pages=1115-1128&rft.issn=0312-5963&rft.eissn=1179-1926&rft_id=info:doi/10.1007/s40262-022-01123-4&rft_dat=%3Cproquest_cross%3E2665560590%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2700799147&rft_id=info:pmid/35579824&rfr_iscdi=true |