Learning distributed representations of concepts using linear relational embedding
We introduce linear relational embedding as a means of learning a distributed representation of concepts from data consisting of binary relations between these concepts. The key idea is to represent concepts as vectors, binary relations as matrices, and the operation of applying a relation to a conc...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on knowledge and data engineering 2001-03, Vol.13 (2), p.232-244 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce linear relational embedding as a means of learning a distributed representation of concepts from data consisting of binary relations between these concepts. The key idea is to represent concepts as vectors, binary relations as matrices, and the operation of applying a relation to a concept as a matrix-vector multiplication that produces an approximation to the related concept. A representation for concepts and relations is learned by maximizing an appropriate discriminative goodness function using gradient ascent. On a task involving family relationships, learning is fast and leads to good generalization. |
---|---|
ISSN: | 1041-4347 1558-2191 |
DOI: | 10.1109/69.917563 |