Borax exerts protective effect against ferrocene-induced neurotoxicity in Oncorhynchus mykiss

In recent years, therapeutic targets and the development of new drugs have shifted research towards inflammatory and oxidative stress pathways. Ferrocene (FcH) is a stable, small molecule that exhibits immunostimulatory and anti-tumor properties by a different mechanism and is effective at low doses...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of trace elements in medicine and biology 2022-07, Vol.72, p.126996-126996, Article 126996
Hauptverfasser: Yeltekin, Aslı Çilingir, Ucar, Arzu, Parlak, Veysel, Özgeriş, Fatma Betül, Türkez, Hasan, Esenbuğa, Nurinisa, Atamanalp, Muhammed, Alak, Gonca
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In recent years, therapeutic targets and the development of new drugs have shifted research towards inflammatory and oxidative stress pathways. Ferrocene (FcH) is a stable, small molecule that exhibits immunostimulatory and anti-tumor properties by a different mechanism and is effective at low doses in oral administration. However, it was surprising that there has been no performed investigation using FcH on aquaculture. On the other hand, recent papers reveal the key biological functions and health benefits due to daily boron intake in animals and humans. Therefore, we investigated the neurotoxic damage potential of FcH and its related neurotoxicity action mechanism in aquatic environments. In addition, the protective potential of borax (BX, or sodium borate) were evaluated againt in vivo neurotoxicity by FcH. Neurotoxicity assessment was performed in rainbow trout brain tissue, acutely under semi-static conditions via determining a vide range of parameters including catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD) activities as well as glutathione (GSH), myeloperoxidase (MPO), glutathione (GSH), malondialdehyde (MDA levels), DNA damage (8-OHdG), apoptosis (caspase 3), tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), nuclear factor erythroid-2 (Nrf-2), acetylcholinesterase (AChE) and brain-derived neurotrophic factor (BDNF) levels. In addition, the LC50 96 h level of FcH was determined for the first time in rainbow trout in this study. In the obtained results, while FcH caused inhibition in enzyme activities, it showed an inducing effect on MDA, MPO, BDNF, Nrf2, TNF-α and IL-6 levels. It was determined that this oxidative damage related alterations were significantly different (p 
ISSN:0946-672X
1878-3252
DOI:10.1016/j.jtemb.2022.126996