Biobased Nonisocyanate Polyurethanes as Recyclable and Intrinsic Self-Healing Coating with Triple Healing Sites
Polymer coatings having high amounts of renewable carbon and self-healing properties are highly sought after in a sustainability perspective. We report here the development of bio-/CO2-derived nonisocyanate polyurethane (NIPU) coatings which are recyclable and healable via three different types of h...
Gespeichert in:
Veröffentlicht in: | ACS macro letters 2021-05, Vol.10 (5), p.635-641 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Polymer coatings having high amounts of renewable carbon and self-healing properties are highly sought after in a sustainability perspective. We report here the development of bio-/CO2-derived nonisocyanate polyurethane (NIPU) coatings which are recyclable and healable via three different types of healing mechanisms. These NIPUs contain furan rings in their main chain which after cross-linking with bismaleimides form organogels having a thermo-reversible sol–gel transition and solvent-borne coatings with improved properties. Judicial selection of the bismaleimide cross-linker structure enabled us to produce recyclable and intrinsic healable coatings mediated by heat (thermo-healing), moisture (moisture-healing), and, more interestingly, dry conditions at room temperature (self-healing). The intrinsic moisture-healing property of NIPU-based coatings is unprecedented and is mainly due to the presence of hydroxyl functionalities in the NIPU structure. The uniqueness of these cross-linked biobased NIPU as recyclable coatings having triple healing sites present in their structure gives these materials potential for sustainable and functional applications. |
---|---|
ISSN: | 2161-1653 2161-1653 |
DOI: | 10.1021/acsmacrolett.1c00163 |