Accelerating Convergence in Stochastic Particle Dispersion Simulation Codes

Recent work in adaptive importance sampling is applied to Markov chain models for Monte Carlo simulations. When this technique is incorporated into the simulation of physical processes, it can give orders-of-magnitude improvement in convergence times relative to standard approaches. We review the re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2001-10, Vol.173 (1), p.231-255
Hauptverfasser: Picard, Richard R., Fitzgerald, Mark, Brown, Michael J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent work in adaptive importance sampling is applied to Markov chain models for Monte Carlo simulations. When this technique is incorporated into the simulation of physical processes, it can give orders-of-magnitude improvement in convergence times relative to standard approaches. We review the related methodology and illustrate its application.
ISSN:0021-9991
1090-2716
DOI:10.1006/jcph.2001.6874