Visualization of Enantiorecognition and Resolution by Chiral AIEgens

Enantioselective recognition and separation have attracted much attention in pharmaceutical analysis, food chemistry, and life science. Herein, we propose an efficient strategy to achieve such purposes using optically active luminogens with aggregation-induced emission (AIE) characteristics. These A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2022-05, Vol.16 (5), p.8223-8232
Hauptverfasser: Wang, Xiaoxuan, Xiang, Song, Qi, Chunxuan, Chen, Mingyu, Su, Xiaolong, Yang, Jun-Cheng, Tian, Jingjing, Feng, Hai-Tao, Tang, Ben Zhong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Enantioselective recognition and separation have attracted much attention in pharmaceutical analysis, food chemistry, and life science. Herein, we propose an efficient strategy to achieve such purposes using optically active luminogens with aggregation-induced emission (AIE) characteristics. These AIE luminogens (AIEgens) show strong enantiomeric discrimination for 12 kinds of chiral acids and unprotected amino acids. In particular, an exceptionally high enantioselectivity for d/l-Boc-glutamic acid was observed, as demonstrated by the large difference between the formed AIEgen/acid complexes. Due to the AIE effect, enantioselective separation was achieved by aggregation of the AIEgens with one enantiomer in the mixed acid solution. Through analysis of the fluorescence standard curve, the aggregates of AIEgen/chiral acid possessed 90% d-analyte, from which the enantiomeric excess (ee) value was assessed to be 80% ee. Such a result is in good agreement with that (91% d-analyte and 82% ee) by chiral HPLC analysis. Thus, this simple one-step aggregation method can serve as a preliminary screening tool for high-throughput analysis or separation of chiral chemicals.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.2c01981