Identification of 6-epi-heliolactone as a biosynthetic precursor of avenaol in Avena strigosa
Strigolactones (SLs) known as rhizosphere signaling molecules and plant hormones regulating shoot architecture, are classified into two distinct groups, canonical and non-canonical SLs based on their structures. Avenaol, a non-canonical SL found in the root exudates of black oat (Avena strigosa), ha...
Gespeichert in:
Veröffentlicht in: | Bioscience, biotechnology, and biochemistry biotechnology, and biochemistry, 2022-05, Vol.86 (8), p.998-1003 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Strigolactones (SLs) known as rhizosphere signaling molecules and plant hormones regulating shoot architecture, are classified into two distinct groups, canonical and non-canonical SLs based on their structures. Avenaol, a non-canonical SL found in the root exudates of black oat (Avena strigosa), has a characteristic bicyclo[4.1.0]heptane skeleton. Elucidating the biosynthetic mechanism of this peculiar structure is a challenge for further understanding the structural diversification of non-canonical SLs. In this study, a novel non-canonical SL, 6-epi-heliolactone in black oat root exudates was identified. Feeding experiments showed that 6-epi-heliolactone was a biosynthetic intermediate between methyl carlactonoate and avenaol. Inhibitor experiments proposed the involvement of 2-oxoglutarate-dependent dioxygenase in converting 6-epi-heliolactone to avenaol. These results provide new insights into the stereochemistry diversity of non-canonical SLs and a basis to explore the biosynthetic pathway causing avenaol. |
---|---|
ISSN: | 1347-6947 1347-6947 |
DOI: | 10.1093/bbb/zbac069 |