OMAMO: orthology-based alternative model organism selection
Abstract Summary The conservation of pathways and genes across species has allowed scientists to use non-human model organisms to gain a deeper understanding of human biology. However, the use of traditional model systems such as mice, rats and zebrafish is costly, time-consuming and increasingly ra...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2022-05, Vol.38 (10), p.2965-2966 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Summary
The conservation of pathways and genes across species has allowed scientists to use non-human model organisms to gain a deeper understanding of human biology. However, the use of traditional model systems such as mice, rats and zebrafish is costly, time-consuming and increasingly raises ethical concerns, which highlights the need to search for less complex model organisms. Existing tools only focus on the few well-studied model systems, most of which are complex animals. To address these issues, we have developed Orthologous Matrix and Alternative Model Organism (OMAMO), a software and a web service that provides the user with the best non-complex organism for research into a biological process of interest based on orthologous relationships between human and the species. The outputs provided by OMAMO were supported by a systematic literature review.
Availability and implementation
https://omabrowser.org/omamo/, https://github.com/DessimozLab/omamo.
Supplementary information
Supplementary data are available at Bioinformatics online. |
---|---|
ISSN: | 1367-4803 1460-2059 1367-4811 |
DOI: | 10.1093/bioinformatics/btac163 |