Engineering tumor-derived small extra cellular vesicles to encapsulate miR-34a, effectively inhibits 4T1 cell proliferation, migration, and gene expression
Tumor cells produce small extra cellular vesicles-(tsEV) massively, which act as cancer messengers that may also have anti-cancer effects. Based on this knowledge, we hypothesized that we can benefit from 4T1-derived sEVs to amplify the anti-cancer effects of miR-34a-replacement therapy in 4T1 cells...
Gespeichert in:
Veröffentlicht in: | Medical oncology (Northwood, London, England) London, England), 2022-05, Vol.39 (7), p.93-93, Article 93 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Tumor cells produce small extra cellular vesicles-(tsEV) massively, which act as cancer messengers that may also have anti-cancer effects. Based on this knowledge, we hypothesized that we can benefit from 4T1-derived sEVs to amplify the anti-cancer effects of miR-34a-replacement therapy in 4T1 cells. Supernatant of 4T1 cultured cells gathered after 24 h of exposure to serum-free media. tsEVs purified by commercial kit and characterized by transmission and scanning electron microscopy, dynamic light scattering, and bicinchoninic acid assay. Modified CaCl
2
method applied for miR-34a loading in tsEV (tsEV-miR) and loading confirmation evaluated by the relative expression of miR-34a. MTT, annexin V/PI, cell cycle, scratch test, and real-time PCR were performed for proliferation, apoptosis, invasion, and relative expression of miR-34a target genes after treatment with tsEV/tsEV-miR, respectively. The results indicated that tsEV-miR provides a time–dose–dependent anti-proliferative effect versus tsEV/control group. tsEV-miR could induce apoptosis and arrest the cell cycle at G0/G1 phase, and moreover, it effectively halted the invasion capability of 4T1 cells. Treatment with tsEV-miR down-regulated miR-34a target genes, including B-cell lymphoma-2, vascular endothelial growth factor and its receptor, matrix metalloproteinase-2 and -9, and interleukin-6. Engineered tsEVs can affect different aspects of 4T1 cancer cells including proliferation, apoptosis, cell cycle, migration, and cancer-related gene expression profile. In this regard, tsEV could be considered a proper vehicle for miR-34a replacement therapy and could exacerbate its anti-cancer effects in triple-negative breast cancer. Indeed, TNBC can be targeted by multiple angles by its weapon. |
---|---|
ISSN: | 1559-131X 1357-0560 1559-131X |
DOI: | 10.1007/s12032-022-01685-0 |