A model for roughness-induced fatigue crack closure

A model for predicting the crack closing stress intensity factor for roughness-induced closure of fatigue cracks is developed based on a two-dimensional approach considering crack opening and closure of an idealized crack path. The model highlights the contribution of irreversible cyclic planar slip...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science Physical Metallurgy and Materials Science, 1998-07, Vol.29A (7), p.1933-1939
Hauptverfasser: Sheng-Hui, Wang, Müller Clemens, Exner, Hans Eckart
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A model for predicting the crack closing stress intensity factor for roughness-induced closure of fatigue cracks is developed based on a two-dimensional approach considering crack opening and closure of an idealized crack path. The model highlights the contribution of irreversible cyclic planar slip at the crack tip, and is extended to real cases describing roughness-induced crack closure as a function of fracture surface roughness parameters at low ΔK levels where planar slip prevails. The resulting equation indicates that roughness-induced crack closure depends on the maximum stress intensity factor, the standard deviation of heights as well as the standard deviation of angles of the crack profile elements, and the yield stress of the material. Comparison between the prediction of the model and experimental data of Kcl for lamellar microstructures of Ti-2.5 Cu as well as TIMETAL 1100 shows good agreement.
ISSN:1073-5623
1543-1940
DOI:10.1007/s11661-998-0018-0