A modified back-propagation method to avoid false local minima

The back-propagation method encounters two problems in practice, i.e., slow learning progress and convergence to a false local minimum. The present study addresses the latter problem and proposes a modified back-propagation method. The basic idea of the method is to keep the sigmoid derivative relat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 1998-08, Vol.11 (6), p.1059-1072
Hauptverfasser: Fukuoka, Yutaka, Matsuki, Hideo, Minamitani, Haruyuki, Akimasa Ishida
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The back-propagation method encounters two problems in practice, i.e., slow learning progress and convergence to a false local minimum. The present study addresses the latter problem and proposes a modified back-propagation method. The basic idea of the method is to keep the sigmoid derivative relatively large while some of the error signals are large. For this purpose, each connecting weight in a network is multiplied by a factor in the range of (0,1], at a constant interval during a learning process. Results of numerical experiments substantiate the validity of the method.
ISSN:0893-6080
1879-2782
DOI:10.1016/S0893-6080(98)00087-2