X-ray emission from nearby M-dwarfs: the super-saturation phenomenon

A rotation rate and X-ray luminosity analysis is presented for rapidly rotating single and binary M-dwarf systems. X-ray luminosities for the majority of both single and binary M-dwarf systems with periods below ≃5–6 d (equatorial velocities, Veq≳6 km s−1) are consistent with the current rotation-ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2000-11, Vol.318 (4), p.1217-1226
Hauptverfasser: James, David J., Jardine, Moira M., Jeffries, Robin D., Randich, Sofia, Collier Cameron, Andrew, Ferreira, Miguel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A rotation rate and X-ray luminosity analysis is presented for rapidly rotating single and binary M-dwarf systems. X-ray luminosities for the majority of both single and binary M-dwarf systems with periods below ≃5–6 d (equatorial velocities, Veq≳6 km s−1) are consistent with the current rotation-activity paradigm, and appear to saturate at about 10−3 of the stellar bolometric luminosity. The single M-dwarf data show tentative evidence for the super-saturation phenomenon observed in some ultra-fast rotating (≳100 km s−1) G- and K-dwarfs in the IC 2391, IC 2602 and Alpha Persei clusters. The IC 2391 M star VXR60b is the least X-ray active and most rapidly rotating of the short period (Prot≲2 d) stars considered herein, with a period of 0.212 d and an X-ray activity level of about 1.5 sigma below the mean X-ray emission level for most of the single M-dwarf sample. For this star, and possibly one other, we cautiously believe that we have identified the first evidence of super-saturation in M-dwarfs. If we are wrong, we demonstrate that only M-dwarfs rotating close to their break-up velocities are likely to exhibit the super-saturation effect at X-ray wavelengths. The M-dwarf X-ray data also show that there is no evidence for any difference in the X-ray behaviour between the single and binary systems, because for the single stars, the mean log LxLbol=−3.21±0.04 (0.2≲Prot≲10.1 d), whereas for the binary stars, the mean log LxLbol=−3.19±0.10 (0.8≲Prot≲10.4 d). Furthermore, we show that extremely X-ray active M-dwarfs exhibit a blue excess of about 0.1 magnitudes in U-B compared with less active field M-dwarfs. Such an excess level is comparable to that observed for extremely chromospherically active M-dwarfs. Moreover, as is the case for M-dwarf Ca ii H and K activity levels, there is an exclusion zone of X-ray activity between the extremely active M-dwarfs and the less active ones.
ISSN:0035-8711
1365-2966
DOI:10.1046/j.1365-8711.2000.03838.x