Zn doping of YBa sub(2)Cu sub(3)O sub(7) in melt textured materials: Peak effect and high trapped fields

The previously introduced modified melt crystallization process (MMCP) has been applied to prepare single grain YBCO bulk material with Zn partially substituting for Cu. Hole doping was controlled by an appropriate oxidizing treatment of the as-grown bulk. A field induced pinning was indicated by a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica. C, Superconductivity Superconductivity, 2000-01, Vol.330 (3), p.181-190
Hauptverfasser: Krabbes, G, Fuchs, G, Schaetzle, P, Gruss, S, Park, J W, Hardinghaus, F, Stoever, G, Hayn, R, Drechsler, S-L, Fahr, T
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The previously introduced modified melt crystallization process (MMCP) has been applied to prepare single grain YBCO bulk material with Zn partially substituting for Cu. Hole doping was controlled by an appropriate oxidizing treatment of the as-grown bulk. A field induced pinning was indicated by a well pronounced peak of the critical current density j sub(c) in the j sub(c) vs. H relationship for the maximal oxidized (overdoped) material containing Zn, whereas pure overdoped YBCO shows no peak effect. The peak effect for Zn-doped YBCO appearing for T identical with 77 K at a relatively high field of about 3 T can be attributed to pair breaking by locally induced magnetic moments due to in plane Zn for Cu substitution. Besides high quality of the bulk YBCO, the peak effect is the reason for the trapped field as large as 1.12 T at 77 K in the cylinder of only 25 mm in diameter.
ISSN:0921-4534