Activation of the N-methyl-D-aspartate receptor contributes to orofacial neuropathic and inflammatory allodynia by facilitating calcium-calmodulin-dependent protein kinase II phosphorylation in mice
Neuropathic and inflammatory pain are major clinical challenges due to their ambiguous mechanisms and limited treatment approaches. N-methyl-D-aspartate receptor (NMDAR) and calcium-calmodulin-dependent protein kinase II (CaMKII) are responsible for nerve system sensation and are required for the in...
Gespeichert in:
Veröffentlicht in: | Brain research bulletin 2022-07, Vol.185, p.174-192 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Neuropathic and inflammatory pain are major clinical challenges due to their ambiguous mechanisms and limited treatment approaches. N-methyl-D-aspartate receptor (NMDAR) and calcium-calmodulin-dependent protein kinase II (CaMKII) are responsible for nerve system sensation and are required for the induction and maintenance of pain. However, the roles of NMDAR and CaMKII in regulating orofacial pain are still less well known. Here, we established a neuropathic pain model by transecting a mouse inferior alveolar nerve (IAN) and an inflammatory pain model by injecting complete Freund’s adjuvant (CFA) into its whisker pad. The Cre/loxp site-specific recombination system was used to conditionally knock out (KO) NR2B in the trigeminal ganglion (TG). Von Frey filament behavioral tests showed that IANX and CFA-induced mechanical allodynia were altered in NR2B-deficient mice. CFA upregulated CaMKIIα and CaMKIIβ in the mouse TG and spinal trigeminal caudate nucleus (SpVc). CaMKIIα first decreased and then increased in the TG after IANX, and CaMKIIβ decreased in the TG and SpVc. CFA and IANX both greatly enhanced the expression of phospho (p)-NR2B, p-CaMKII, cyclic adenosine monophosphate (cAMP), p-ERK, and p-cAMP response element binding protein (CREB) in the TG and SpVc. These neurochemical signal pathway alterations were reversed by the conditional KO of NR2B and inhibition of CaMKII. Similarly, IANX- and CFA-related behavioral alterations were reversed by intra-ganglionic (i.g.) -application of inhibitors of CaMKII, cAMP, and ERK. These findings revealed novel molecular signaling pathways (NR2B-CaMKII-cAMP-ERK-CREB) in the TG- and SpVc-derived latent subsequent peripheral and spinal central sensitization under nerve injury and inflammation, which might be beneficial for the treatment of orofacial allodynia.
[Display omitted]
•Nerve injury (IANX) and inflammation (CFA) evoked orofacial allodynia.•Blocking NR2B, CaMKII, cAMP and ERK suppressed the orofacial allodynia.•NR2B and CaMKII co-expressed on neurons in the TG and SpVc.•CFA up-regulated CaMKIIα and CaMKIIβ, whereas IANX down-regulated CaMKIIβ.•Activation of p-NR2B and p-CaMKII increased cAMP, p-ERK, and p-CREB. |
---|---|
ISSN: | 0361-9230 1873-2747 |
DOI: | 10.1016/j.brainresbull.2022.05.003 |