At the molecular plant–nematode interface: New players and emerging paradigms
Plant-parasitic nematodes (PPNs) secrete an array of molecules that can lead to their detection by or promote infection of their hosts. However, the function of these molecules in plant cells is often unknown or limited to phenotypic observations. Similarly, how plant cells detect and/or respond to...
Gespeichert in:
Veröffentlicht in: | Current opinion in plant biology 2022-06, Vol.67, p.102225-102225, Article 102225 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Plant-parasitic nematodes (PPNs) secrete an array of molecules that can lead to their detection by or promote infection of their hosts. However, the function of these molecules in plant cells is often unknown or limited to phenotypic observations. Similarly, how plant cells detect and/or respond to these molecules is still poorly understood. Here, we highlight recent advances in mechanistic insights into the molecular dialogue between PPNs and plants at the cellular level. New discoveries reveal a) the essential roles of extra- and intracellular plant receptors in PPN perception and the manipulation of host immune- or developmental pathways during infection and b) how PPNs target such receptors to manipulate their hosts. Finally, the plant secretory pathway has emerged as a critical player in PPN peptide delivery, feeding site formation and non-canonical resistance.
•Perception of PPNs at the cell surface induces immune and developmental pathways.•PPNs exploit the host cell post-translational trafficking machinery.•The host secretory pathway is critical in feeding site formation and PPN resistance.•Intracellular NLR immune receptors act in concert to trigger plant resistance to PPN.•PPN effectors, including peptide mimics, target plant immune receptors for virulence. |
---|---|
ISSN: | 1369-5266 1879-0356 |
DOI: | 10.1016/j.pbi.2022.102225 |