Optimizing Chitosan/Collagen Type I/Nanohydroxyapatite Cross-linked Porous Scaffolds for Bone Tissue Engineering
Bio-composite scaffolds mimicking the natural microenvironment of bone tissue offer striking advantages in material-guided bone regeneration. The combination of biodegradable natural polymers and bioactive ceramics that leverage potent bio-mimicking cues has been an active strategy to achieve succes...
Gespeichert in:
Veröffentlicht in: | Applied biochemistry and biotechnology 2022-09, Vol.194 (9), p.3843-3859 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bio-composite scaffolds mimicking the natural microenvironment of bone tissue offer striking advantages in material-guided bone regeneration. The combination of biodegradable natural polymers and bioactive ceramics that leverage potent bio-mimicking cues has been an active strategy to achieve success in bone tissue engineering. Herein, a competitive approach was followed to point out an optimized bio-composite scaffold in terms of scaffold properties and stimulation of osteoblast differentiation. The scaffolds, composed of chitosan/collagen type I/nanohydroxyapatite (Chi/Coll/nHA) as the most attractive components in bone tissue engineering, were analyzed. The scaffolds were prepared by freeze-drying method and cross-linked using different types of cross-linkers. Based on the physicochemical and mechanical characterization, the scaffolds were eliminated comparatively. All types of scaffolds displayed highly porous structures. The cross-linker type and collagen content had prominent effects on mechanical strength. Glyoxal cross-linked structures displayed optimum mechanical and structural properties. The MC3T3‐E1 proliferation, osteogenic‐related gene expression, and matrix mineralization were better pronounced in collagen presence and triggered as collagen type I amount was increased. The results highlighted that glyoxal cross-linked scaffolds containing equal amounts of Chi and Coll by mass and 1% (w/v) nHA are the best candidates for osteoblast differentiation and matrix mineralization. |
---|---|
ISSN: | 0273-2289 1559-0291 |
DOI: | 10.1007/s12010-022-03962-0 |