Experiments dependent on neutron spin transitions

Experiments dependent on neutron spin orientation transitions which give fundamental physics information are described. The magnetic moment of the neutron has been measured to be 1.91304275(45) nuclear magnetons by separated oscillatory fields resonant reorientations of the spins of neutrons in a be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics communications 2000-05, Vol.179 (1), p.9-12
1. Verfasser: Ramsey, Norman F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Experiments dependent on neutron spin orientation transitions which give fundamental physics information are described. The magnetic moment of the neutron has been measured to be 1.91304275(45) nuclear magnetons by separated oscillatory fields resonant reorientations of the spins of neutrons in a beam passing through a magnetic field. In similar resonance experiments with ultracold neutrons trapped in a bottle, the neutron electric dipole moment has been shown to be less than 9×10 −26 e cm. Neutrons `dressed' with many radiofrequency quanta have been studied. The Berry phases of neutrons that have passed through a helical magnetic field or an oscillatory magnetic field have been observed. In neutron interactions, experiments with condensed matter, small changes in neutron velocities have been measured by changes in the neutron precessions in magnetic fields before and after the interaction. Parity non-conserving spin rotations of neutrons passing through various materials have been observed and measured and new experiments with H 2 and He are in progress.
ISSN:0030-4018
1873-0310
DOI:10.1016/S0030-4018(99)00681-1